An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm