Home / Aptitude Tests / Further Mathematics / Simplify: \(\frac{\c...
Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)...

Simplify: \(\frac{\cos 2\theta - 1}{\sin 2\theta}\)

A.

\(-\tan \theta\)

B.

\(-\cos \theta\)

C.

\(\tan \theta\)

D.

\(\cos \theta\)

Correct answer is A

\(\frac{\cos 2\theta - 1}{\sin 2\theta}\)

\(\cos (x + y) = \cos x \cos y - \sin x \sin y \implies \cos 2\theta = \cos^{2} \theta - \sin^{2} \theta\)

\(\cos^{2} \theta = 1 - \sin^{2} \theta \implies \cos 2\theta = 1 - 2\sin^{2} \theta\)

\(\sin 2\theta = 2\sin \theta \cos \theta\)

\(\therefore \frac{\cos 2\theta - 1}{\sin 2\theta} = \frac{1 - 2\sin^{2}\theta - 1}{2\sin \theta \cos \theta}\)

= \(\frac{-2 \sin^{2} \theta}{2\sin \theta \cos \theta} = \frac{- \sin \theta}{\cos \theta}\)

= \(-\tan \theta\)