Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

251.

Simplify \(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0}\)

A.

n - 5

B.

n - 3

C.

2n - 1

D.

2n - 3

Correct answer is D

\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0}\)

\(\frac{^{n}P_{3}}{^{n}C_{2}} = \frac{n!}{(n - 3)!} ÷ \frac{n!}{(n - 2)! 2!}\)

\(\frac{n!}{(n - 3)!} \times \frac{(n - 2)(n - 3)! 2!}{n!} = 2n - 4\)

\(^{n}P_{0} = \frac{n!}{(n - 0)!} = 1\)

\(\frac{^{n}P_{3}}{^{n}C_{2}} + ^{n}P_{0} = 2n - 4 + 1 = 2n - 3\)

252.

The equation of a circle is given by \(x^{2} + y^{2} - 4x - 2y - 3\). Find the radius and the coordinates of its centre.

A.

\(3, (-1, 2)\)

B.

\(2\sqrt{2}, (2, -1)\)

C.

\(2\sqrt{2}, (2, 1)\)

D.

\(9, (2, 1)\)

Correct answer is C

Equation of a circle with radius r and centre (a, b).

= \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding, we have

\(x^{2} - 2ax + a^{2} + y^{2} - 2by + b^{2} = r^{2}\)

Comparing, with \(x^{2} + y^{2} - 4x - 2y - 3 = 0\)

\(2a = 4 \implies a = 2\)

\(2b = 2 \implies b = 1\)

\(r^{2} - a^{2} - b^{2} = 3 \implies r^{2} = 3 + 2^{2} + 1^{2} = 8\)

\(r = 2\sqrt{2}\)

253.

Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ 3 & 2 \end{pmatrix}\). Evaluate \(|Q|P\).

A.

\(\begin{pmatrix} 16 & 36 \end{pmatrix}\)

B.

\(\begin{pmatrix} 8 & 18 \end{pmatrix}\)

C.

\(\begin{pmatrix} 8 & 0 \end{pmatrix}\)

D.

\(\begin{pmatrix} 1 & 2 \end{pmatrix}\)

Correct answer is A

\(|Q| = \begin{vmatrix} -1 & -2 \\ 3 & 2 \end{vmatrix}\)

= \(-2 - (-6) = 4\)

\(4P = 4\begin{pmatrix} 4 & 9 \end{pmatrix}\)

= \(\begin{pmatrix} 16 & 36 \end{pmatrix}\)

254.

Given that \(P = \begin{pmatrix} 4 & 9 \end{pmatrix}\) and \(Q = \begin{pmatrix} -1 & -2 \\ 3 & 2 \end{pmatrix}\). Which of the following operations is possible?

A.

\(QP\)

B.

\(P^{2}\)

C.

\(Q^{2}P\)

D.

\(PQ\)

Correct answer is D

A \(1 \times 2\) matrix can be multiplied by \(2 \times 2\) matrix to give a \(1 \times 2\) matrix.

255.

How many ways can 12 people be divided into three groups of 2, 7 and 3 in that order?

A.

7920

B.

792

C.

187

D.

42

Correct answer is A

= \(\frac{12!}{2! 3! 7!} \)

\(\frac{12 \times 11 \times 10 \times 9 \times 8 \times 7!}{2 \times 3 \times 2 \times 7!}\)

= \(7,920\)