Evaluate \(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

A.

4

B.

3

C.

2

D.

0

Correct answer is A

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)

\(\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}\)

\(\frac{(x - 3)(x + 1)}{x - 3} = x + 1\)

\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1)\) (L'Hopital rule)

\(\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4\)