4
3
2
0
Correct answer is A
\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)
\(\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}\)
\(\frac{(x - 3)(x + 1)}{x - 3} = x + 1\)
\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1)\) (L'Hopital rule)
\(\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4\)
Find the distance between the points (2, 5) and (5, 9). ...
Express \(\frac{2}{3 - \sqrt{7}} \text{ in the form} a + \sqrt{b}\), where a and b are integers....
Find the radius of the circle \(x^{2} + y^{2} - 8x - 2y + 1 = 0\)....
A function is defined by \(f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1\). Find f(-3)....
Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)...
Evaluate \(\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}...
If \(\frac{5}{\sqrt{2}} - \frac{\sqrt{8}}{8} = m\sqrt{2}\), where m is a constant. Find m....