4
3
2
0
Correct answer is A
\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3}\)
\(\frac{x^{2} - 2x - 3}{x - 3} = \frac{x^{2} - 3x + x - 3}{x - 3}\)
\(\frac{(x - 3)(x + 1)}{x - 3} = x + 1\)
\(\lim \limits_{x \to 3} \frac{x^{2} - 2x - 3}{x - 3} \equiv \lim \limits_{x \to 3} (x + 1)\) (L'Hopital rule)
\(\lim \limits_{x \to 3} (x + 1) = 3 + 1 = 4\)
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....
If \(f(x) = x^{2}\) and \(g(x) = \sin x\), find g o f....
Evaluate \(\lim \limits_{x \to 1} \frac{1 - x}{x^{2} - 3x + 2}\)...
Find the coordinates of the centre of the circle \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)....
Given that \(x * y = \frac{x + y}{2}, x \circ y = \frac{x^{2}}{y}\) and \((3 * b) \circ&nb...