Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.
12m
16m
64m
96m
Correct answer is B
V = 3t\(^2\) - 6t
\(\frac{ds}{dt} = 3t^2 - 6t\)
s = \(\int 3t^2 - 6t\)
s = \(\frac{3t^3}{3} - \frac{6t^2}{2} + k\)
s = t\(^3\) - 3t\(^2\) + k
s = 0, t = 0
s = t\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3(4)\(^2\)
= 64 - 48 = 16m
Calculate the mean deviation of 5, 8, 2, 9 and 6
5
4
3
2
Correct answer is D
x | x - \(\bar{x}\) | (x - \(\bar{x}\)) |
5 8 2 9 6 |
-1 2 -4 3 0 |
1 2 4 3 0 |
\(\bar{x}\) = \(\frac{30}{5}\) = 6
\(\sum |x - \bar{x}|\)
= 10
Mean deviation = \(\frac{10}{5}\)
= 2
If the mean of 2, 5, (x + 1), (x + 2), 7 and 9 is 6, find the median.
6.5
6.0
5.5
5.0
Correct answer is C
\(\frac{1 + 5 + x + 6 + x + 2 + 7 + 9}{6}\) = 6
26 + 2x = 36
2x = 36 - 26
2x = 10
x = \(\frac{10}{2}\) = 5
2, 5, 6, 7, 7, 9
Median = \(\frac{6 + 7}{2}\) = 6.5
\(\begin{pmatrix} - \frac{5}{3} &, 0 \end {pmatrix}\)
\(\begin{pmatrix} 0, & - \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} 0, & \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} \frac{5}{3} &, 0 \end {pmatrix}\)
Correct answer is D
y = 8x + 5
m = 8
y = 3x\(^2\) - 2x - 5
\(\frac{dy}{dx}\) = 6x - 2x - 5
\(\frac{6x}{6} = \frac{10}{6}\)
x = \(\frac{5}{3}\)
y = 0
30m
32m
42m
50m
Correct answer is B
h = 96 Tan 30\(^o\) = 55.425
P = \(\frac{55.425}{Tan60^o}\)
= 32m