\(\begin{pmatrix} - \frac{5}{3} &, 0 \end {pmatrix}\)
\(\begin{pmatrix} 0, & - \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} 0, & \frac{5}{3} \end {pmatrix}\)
\(\begin{pmatrix} \frac{5}{3} &, 0 \end {pmatrix}\)
Correct answer is D
y = 8x + 5
m = 8
y = 3x\(^2\) - 2x - 5
\(\frac{dy}{dx}\) = 6x - 2x - 5
\(\frac{6x}{6} = \frac{10}{6}\)
x = \(\frac{5}{3}\)
y = 0
Find the direction cosines of the vector \(4i - 3j\)....
Given that M is the midpoint of T (2, 4) and Q (-8, 6), find the length of MQ . ...
Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x...
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
The table shows the distribution of the distance (in km) covered by 40 hunters while hunting. Wha...
Which of the following is a singular matrix? ...
If \(y^{2} + xy - x = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\)....