Find the coordinates of the point in the curve y = 3x\(^2\) - 2x - 5 where the tangent is parallel to the line y = - 5 = 8x

A.

\(\begin{pmatrix} - \frac{5}{3} &, 0 \end {pmatrix}\)

B.

\(\begin{pmatrix} 0, & - \frac{5}{3} \end {pmatrix}\)

C.

\(\begin{pmatrix} 0, & \frac{5}{3} \end {pmatrix}\)

D.

\(\begin{pmatrix} \frac{5}{3} &, 0 \end {pmatrix}\)

Correct answer is D

y = 8x + 5 

m = 8

y = 3x\(^2\) - 2x - 5 

\(\frac{dy}{dx}\) = 6x - 2x - 5

\(\frac{6x}{6} = \frac{10}{6}\) 

x = \(\frac{5}{3}\)

y = 0