12m
16m
64m
96m
Correct answer is B
V = 3t\(^2\) - 6t
\(\frac{ds}{dt} = 3t^2 - 6t\)
s = \(\int 3t^2 - 6t\)
s = \(\frac{3t^3}{3} - \frac{6t^2}{2} + k\)
s = t\(^3\) - 3t\(^2\) + k
s = 0, t = 0
s = t\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3t\(^2\)
s = 4\(^3\) - 3(4)\(^2\)
= 64 - 48 = 16m
The inverse of a function is given by \(f^{-1} : x \to \frac{x + 1}{4}\)....
If α and β are the roots of 3x\(^2\) - 7x + 6 = 0, find \(\frac{1}{α}\) +...
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...
Given that X : R \(\to\) R is defined by x = \(\frac{y + 1}{5 - y}\) , y \(\in\) R, find ...
If \(Px^{2} + (P+1)x + P = 0\) has equal roots, find the values of P....
Find \(\lim\limits_{x \to 3} \frac{2x^{2} + x - 21}{x - 3}\)....