Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

186.

The second and fourth terms of an exponential sequence (G.P) are \(\frac{2}{9}\) and \(\frac{8}{81}\) respectively. Find the sixth term of the sequence 

A.

\(\frac{81}{32}\)

B.

\(\frac{9}{8}\)

C.

\(\frac{1}{4}\)

D.

\(\frac{32}{729}\)

Correct answer is D

ar = \(\frac{2}{9}\) .....(i) 

ar\(^3\) = \(\frac{8}{81}\) ......(ii) 

\(\frac{ar3}{ar} = \frac{8}{81} \times \frac{9}{2}\) 

r\(^2 = \frac{4}{9}\) 

r = \(\sqrt{\frac{4}{9}}\) 

= \(\frac{2}{3}\) 

ar = \(\frac{2}{9}\) 

a(\(\frac{2}{3}\)) = \(\frac{2}{9}\)

a = (\(\frac{2}{3}\)) = \(\frac{2}{9}\)

a = \(\frac{2}{9} \times \frac{3}{2}\)

a = \(\frac{1}{3}\) 

T\(_r\) = ar\(^5\) = (\(\frac{1}{3}\))(\(\frac{2}{5}\))\(^5\) 

= \(\frac{32}{729}\) 

187.

If P = \(\begin {pmatrix} 2 & 3\\  -4 & 1 \end {pmatrix}\), Q = \(\begin{pmatrix} 6 \\ 8 \end {pmatrix}\) and PQ = k \(\begin {pmatrix} 45\\ -20 \end {pmatrix}\). Find the value of k.

A.

-\(\frac{5}{4}\)

B.

-\(\frac{4}{5}\)

C.

\(\frac{4}{5}\)

D.

\(\frac{5}{4}\)

Correct answer is C

PQ = \(\begin {pmatrix} 2 & 3\\ -4 & 1\end {pmatrix}\) = \(\begin {pmatrix} 6 \\ 8 \end {pmatrix}\) = \(\begin {pmatrix} 36 \\ - 16\end {pmatrix}\)

\(\begin {pmatrix} 36 \\ -16 \end {pmatrix} \) = k = \(\begin {pmatrix} 45 \\ -20 \end {pmatrix} \)

k = \(\frac{36}{45}\) 

= \(\frac{4}{5}\)

188.

Calculate the distance between points (-2, -5) and (-1, 3) 

A.

\(\sqrt{5}\) units

B.

\(\sqrt{17}\) units

C.

\(\sqrt{65}\) units

D.

\(\sqrt{73}\) units

Correct answer is C

distance = \(\sqrt{(3 - (-5)^2 + (-1 - (-2)^2)}\)

= \(\sqrt{8^2 + 1^2}\)

= \(\sqrt{65}\) units

189.

Find the value of x for which 6\(\sqrt{4x^2 + 1}\) = 13x, where x > 0

A.

\(\frac{6}{5}\)

B.

\(\frac{25}{24}\)

C.

\(\frac{24}{25}\)

D.

\(\frac{5}{6}\)

Correct answer is A

\(\sqrt{4x^2 + 1}\) = \(\frac{13x}{6}\)

4x\(^2\) + 1 = \(\frac{169x^2}{36}\)

4 + x\(^2\)  = \(\frac{169x^2}{36}\) 

cross multiply

169x\(^2\) - 144x\(^2\) = 36

25x\(^2\) = 36

x\(^2\) = \(\frac{36}{25}\)

: x = \(\pm\frac{6}{5}\)

190.

Find the sum of the first 20 terms of the sequence -7-3, 1, ......

A.

620

B.

660

C.

690

D.

1240

Correct answer is A

d = -3 - (-7) = 4

S\(_{20}\) = \(\frac{20}{2}\){2(-7) + (20 - 1) 4}

= 10(- 14 + 76)

= 620