20
21
22
23
Correct answer is D
Tn=a+(n−1)d (for a linear or arithmetic progression)
Given: Tn=71,a=−6,d=−212−(−6)=312
⟹71=−6+(n−1)×312
71=−6+312n−312=−912+312n
71+912=312n⟹n=8012312
=23
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...
The polynomial 2x^{3} + 3x^{2} + qx - 1 has the same reminder when divided by (x + 2) and \(...
Given that y^2 + xy = 5,find \frac{dy}{dx}...
Given that \frac{1}{8^{2y - 3y}} = 2^{y + 2}....
Given that P = \begin{pmatrix} 4 & 9 \end{pmatrix} and \(Q = \begin{pmatrix} -1 & -2 \\ ...
Find the derivative of 3x^{2} + \frac{1}{x^{2}}...
Find the coordinates of the point in the curve y = 3x^2 - 2x - 5 where the tangent is parallel t...