20
21
22
23
Correct answer is D
\(T_{n} = a + (n - 1)d\) (for a linear or arithmetic progression)
Given: \(T_{n} = 71, a = -6, d = -2\frac{1}{2} - (-6) = 3\frac{1}{2}\)
\(\implies 71 = -6 + (n - 1)\times 3\frac{1}{2}\)
\(71 = -6 + 3\frac{1}{2}n - 3\frac{1}{2} = -9\frac{1}{2} + 3\frac{1}{2}n\)
\(71 + 9\frac{1}{2} = 3\frac{1}{2}n \implies n = \frac{80\frac{1}{2}}{3\frac{1}{2}}\)
\(= 23\)
Find the stationary point of the curve \(y = 3x^{2} - 2x^{3}\)....
Find the value of the derivative of y = 3x\(^2\) (2x +1) with respect to x at the point x = 2. ...
If \(P = \begin{pmatrix} 1 & 2 \\ 5 & 1 \end{pmatrix}\) and \(Q = \begin{pmatrix} 0 & 1 ...
Solve \(9^{2x + 1} = 81^{3x + 2}\)...
Find the number of different arrangements of the word IKOTITINA. ...