Processing math: 26%

WAEC Further Mathematics Past Questions & Answers - Page 87

431.

The equation of a circle is 3x2+3y2+6x12y+6=0. Find its radius

A.

1

B.

3

C.

11

D.

6

Correct answer is B

The equation of a circle is given as (xa)2+(yb)2=r2

Expanding this, we have x2+y22ax2by+a2+b2=r2

Comparing with the given equation, 3x2+3y2+6x12y+6=0x2+y2+2x4y+2=0 (making the coefficients of x2 and y2 = 1 , we get that

2a=2a=1

2b=4b=2

r2a2b2=2

r = \sqrt{3}

432.

Solve 3x^{2} + 4x + 1 > 0

A.

x < -1, x < -\frac{1}{3}

B.

x > -1, x > -\frac{1}{3}

C.

x > \frac{1}{3}, x < -1

D.

x < \frac{1}{3}, x > -1

Correct answer is B

3x^{2} + 4x + 1 > 0

3x^{2} + 3x + x + 1 > 0

3x(x + 1) + 1(x + 1) > 0

(3x + 1)(x + 1) > 0

3x + 1 > 0 \implies 3x > -1

x > -\frac{1}{3}

x + 1 > 0 \implies x > -1

x > -1, x > -\frac{1}{3}

433.

Simplify \sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}

A.

\frac{-5}{6}

B.

-\frac{4}{27}

C.

0

D.

\frac{2}{9}

Correct answer is A

\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{\frac{-1}{2}}

\frac{2}{3} - (\frac{9}{4})^{\frac{1}{2}}

= \frac{2}{3} - \frac{3}{2}

= \frac{-5}{6}

434.

A function is defined by f(x) = \frac{3x + 1}{x^{2} - 1}, x \neq \pm 1. Find f(-3).

A.

-1\frac{1}{4}

B.

-1

C.

\frac{4}{5}

D.

1

Correct answer is B

f(x) = \frac{3x + 1}{x^{2} - 1}

f(-3) = \frac{3(-3) + 1}{(-3)^{2} - 1} = \frac{-8}{8} = -1

435.

Find the remainder when 5x^{3} + 2x^{2} - 7x - 5 is divided by (x - 2).

A.

-51

B.

-23

C.

29

D.

49

Correct answer is C

Using remainder theorem, the remainder when 5x^{3} + 2x^{2} - 7x -5 is divided by (x - 2) = f(2)

f(2) = 5(2^{3}) + 2(2^{2}) - 7(2) -5 = 40 + 8 - 14 - 5

= 29