WAEC Further Mathematics Past Questions & Answers - Page 84

416.

The probability that Kofi and Ama hit a target in a shooting competition are \(\frac{1}{6}\) and \(\frac{1}{9}\) respectively. What is the probability that only one of them hit the target?

A.

\(\frac{1}{54}\)

B.

\(\frac{13}{54}\)

C.

\(\frac{20}{27}\)

D.

\(\frac{41}{54}\)

Correct answer is B

P(only one hit target) = P(Kofi not Ama) + P(Ama not Kofi)

P(Kofi not Ama) = P(Kofi and Ama') = \(\frac{1}{6} \times \frac{8}{9} = \frac{8}{54}\)

P(Ama not Kofi) = P(Ama and Kofi') = \(\frac{1}{9} \times \frac{5}{6} = \frac{5}{54}\)

P(only one hit target) = \(\frac{8}{54} + \frac{5}{54} = \frac{13}{54}\)

417.

The mean of 2, 5, (x + 2), 7 and 9 is 6. Find the median.

A.

5.5

B.

6.0

C.

6.5

D.

7.0

Correct answer is D

\(\frac{2 + 5+ (x + 2) + 7 + 9}{5} = 6 \implies 25 + x = 30\)

\(x = 5 \therefore x + 2 = 5 + 2 = 7\)

Arranging the numbers in ascending order: 2, 5, 7, 7, 9. 

Median = 7.0

418.

Determine the coefficient of \(x^{2}\) in the expansion of \((a + 3x)^{6}\)

A.

\(18a^{2}\)

B.

\(45a^{4}\)

C.

\(135a^{4}\)

D.

\(1215a^{2}\)

Correct answer is C

\((a + 3x)^{6}\).

The coefficient of \(x^{2}\) is:

\(^{6}C_{4}(a)^{6 - 2} (3x)^{2} = \frac{6!}{(6 - 4)! 4!} (a^{4})(9x^{2})\)

\(15 \times a^{4} \times 9 = 135a^{4}\)

419.

Find the equation of a circle with centre (-3, -8) and radius \(4\sqrt{6}\)

A.

\(x^{2} - y^{2} - 6x + 16y + 23 = 0\)

B.

\(x^{2} + y^{2} + 6x + 16y - 23 = 0\)

C.

\(x^{2} + y^{2} + 6x - 16y + 23 = 0\)

D.

\(x^{2} + y^{2} - 6x + 16y + 23 = 0\)

Correct answer is B

Equation of a circle: \((x - a)^{2} + (y - b)^{2} = r^{2}\)

where (a, b) and r are the coordinates of the centre and radius respectively.

Given : \((a, b) = (-3, -8); r = 4\sqrt{6}\)

\((x - (-3))^{2} + (y - (-8))^{2} = (4\sqrt{6})^{2}\)

\(x^{2} + 6x + 9 + y^{2} + 16y + 64 = 96\)

\(x^{2} + y^{2} + 6x + 16y + 9 + 64 - 96 = 0\)

\(\implies x^{2} + y^{2} + 6x + 16y - 23 = 0\)

420.

Evaluate \(\frac{1}{1 - \sin 60°}\), leaving your answer in surd form.

A.

\(1 - \sqrt{3}\)

B.

\(2 - \sqrt{3}\)

C.

\(4 - 2\sqrt{3}\)

D.

\(4 + 2\sqrt{3}\)

Correct answer is D

No explanation has been provided for this answer.