\(18a^{2}\)
\(45a^{4}\)
\(135a^{4}\)
\(1215a^{2}\)
Correct answer is C
\((a + 3x)^{6}\).
The coefficient of \(x^{2}\) is:
\(^{6}C_{4}(a)^{6 - 2} (3x)^{2} = \frac{6!}{(6 - 4)! 4!} (a^{4})(9x^{2})\)
\(15 \times a^{4} \times 9 = 135a^{4}\)
Given that \(y = 4 - 9x\) and \(\Delta x = 0.1\), calculate \(\Delta y\)....
If\((\frac{1}{9})^{2x-1} = (\frac{1}{81})^{2-3x}\)find the value of x...
The table shows the distribution of the distance (in km) covered by 40 hunters while hunting. ...
Simplify \(\frac{1}{3}\) log8 + \(\frac{1}{3}\) log 64 - 2 log6...
Simplify \(\sqrt[3]{\frac{8}{27}} - (\frac{4}{9})^{-\frac{1}{2}}\)...