Processing math: 22%

WAEC Further Mathematics Past Questions & Answers - Page 72

356.

The coordinates of the centre of a circle is (-2, 3). If its area is 25πcm2, find its equation. 

A.

x2+y24x6y12=0

B.

x2+y24x+6y12=0

C.

x2+y2+4x+6y12=0

D.

x2+y2+4x6y12=0

Correct answer is D

Equation of a circle with centre coordinates (a, b) : (xa)2+(yb)2=r2

Area of circle = πr2=25πcm2r2=25

(a, b) = (-2, 3)

Equation: (x - (-2))^{2} + (y - 3)^{2} = 5^{2}

x^{2} + 4x + 4 + y^{2} - 6y + 9 = 25 \implies x^{2} + y^{2} + 4x - 6y + 13 - 25 = 0

= x^{2} + y^{2} + 4x - 6y - 12 = 0

357.

The line y = mx - 3 is a tangent to the curve y = 1 - 3x + 2x^{3} at (1, 0). Find the value of the constant m.

A.

-4

B.

-1

C.

3

D.

4

Correct answer is C

y = 1 - 3x + 2x^{3}

\frac{\mathrm d y}{\mathrm d x} = -3 + 6x^{2}

At (1, 0), \frac{\mathrm d y}{\mathrm d x} = -3 + 6(1^{2}) = -3 + 6 = 3

y = mx - 3 \implies \frac{\mathrm d y}{\mathrm d x} = m = 3 (Tangent with equal gradient)

358.

If (x + 3) is a factor of the polynomial x^{3} + 3x^{2} + nx - 12, where n is a constant, find the value of n.

A.

-1

B.

-2

C.

-3

D.

-4

Correct answer is D

x + 3 = 0 \implies x = -3

Using remainder theorem, if x + 3 is a factor, f(-3) = 0.

f(-3) = (-3)^{3} + 3(-3)^{2} + n(-3) - 12 = 0

-27 + 27 - 3n - 12 = 0 \implies -3n = 12

n = -4

359.

Solve x^{2} - 2x - 8 > 0.

A.

x < -4 or x > 2

B.

x < -2 or x > 4

C.

-2 < x < 4

D.

-4 < x < 2

Correct answer is B

No explanation has been provided for this answer.

360.

What is the angle between a = (3i - 4j) and b = (6i + 4j)?

A.

13°

B.

87°

C.

100°

D.

110°

Correct answer is B

a . b = |a||b| \cos \theta

a = 3i - 4j; b = 6i + 4j

18 - 16 = (\sqrt{3^{2} + (-4)^{2}})(\sqrt{6^{2} + 4^{2}}) \cos \theta

2 = 5\sqrt{52} \cos \theta

\cos \theta = \frac{2}{5\sqrt{52}} = 0.0555

\theta = 86.8° \approxeq 87°