If 3p = 4q and 9p = 8q - 12, find the value of pq.
12
7
-7
-12
Correct answer is A
9p = 8q - 12
9p = 2(4q) - 12
9p = 2(3q) - 12
9p = 6p - 12
3p = -12
p = -4
\(\frac{3 \times -4}{4} = \frac{4q}{4}\)
q = 13
pq = -3 x -4
= 12
5%
10%
12%
13%
Correct answer is B
15 = (\(\frac{6,900 - C.P \times 100}{C.P}\))
15 C.P = 690000 - C.P 100
C.P = \(\frac{690000}{115}\)
C.P = N6,000
%profit = \(\frac{6,600 - 6,000}{6,000}\) x 100
= \(\frac{600}{6,000}\) x 100
= 10%
Simplify: \(\log_{10}\) 6 - 3 log\(_{10}\) 3 + \(\frac{2}{3} \log_{10} 27\)
3 \(\log_{10}^2\)
\(\log_{10}^2\)
\(\log_{10}^3\)
2 \(\log_{10}^3\)
Correct answer is B
log\(_{10}\) 6 - log\(_{10}\)3\(^3\) + log\(_{10}\) (\(\sqrt[3]{27}\))\(^2\)
= log \(_{10}\) 6 - log \(_{10}\) 27 + log\(_{10}\) 9
= log\(_{10}\) \(\frac{6 \times 9}{27}\)
= log\(_{10}\)2
Solve 4x^{2}\) - 16x + 15 = 0.
x = 1\(\frac{1}{2}\) or x = -2\(\frac{1}{2}\)
x = 1\(\frac{1}{2}\) or x = 2\(\frac{1}{2}\)
x = 1\(\frac{1}{2}\) or x = -1\(\frac{1}{2}\)
x = -1\(\frac{1}{2}\) or x -2\(\frac{1}{2}\)
Correct answer is B
4x\(^2\) - 16x + 15 = 0
(2x - 3)(2x - 5) = 0
x = 1\(\frac{1}{2}\) or x = 2\(\frac{1}{2}\)
H = \(\frac{p}{4y^2}\)
H = \(\frac{2p}{y^2}\)
H = \(\frac{p}{2y^2}\)
H = \(\frac{p}{y^2}\)
Correct answer is C
H \(\propto\) \(\frac{p}{y^2}\)
H = \(\frac{pk}{y^2}\)
1 = \(\frac{8k}{2^2}\)
k = \(\frac{4}{8}\)
= \(\frac{1}{2}\)
H = \(\frac{p}{2y^2}\)