3 \(\log_{10}^2\)
\(\log_{10}^2\)
\(\log_{10}^3\)
2 \(\log_{10}^3\)
Correct answer is B
log\(_{10}\) 6 - log\(_{10}\)3\(^3\) + log\(_{10}\) (\(\sqrt[3]{27}\))\(^2\)
= log \(_{10}\) 6 - log \(_{10}\) 27 + log\(_{10}\) 9
= log\(_{10}\) \(\frac{6 \times 9}{27}\)
= log\(_{10}\)2