WAEC Further Mathematics Past Questions & Answers - Page 37

181.

A particle starts from rest and moves in a straight line such that its velocity, V ms\(^{-1}\), at time t second is given by V = 3t\(^2\) - 6t. Calculate the acceleration in the 3rd second. 

A.

12m

B.

16m

C.

64m

D.

96m

Correct answer is B

V = 3t\(^2\) - 6t

\(\frac{ds}{dt} = 3t^2 - 6t\)

s = \(\int 3t^2 - 6t\)

s = \(\frac{3t^3}{3} - \frac{6t^2}{2} + k\)

s = t\(^3\) - 3t\(^2\) + k

s = 0, t = 0

s = t\(^3\) - 3t\(^2\) 

s = 4\(^3\) - 3t\(^2\) 

s = 4\(^3\) - 3(4)\(^2\) 

= 64 - 48 = 16m

182.

Calculate the mean deviation of 5, 8, 2, 9 and 6

A.

5

B.

4

C.

3

D.

2

Correct answer is D

x x - \(\bar{x}\) (x - \(\bar{x}\))

5

8

2

9

6

-1

2

-4

3

0

1

2

4

3

0

 

\(\bar{x}\) = \(\frac{30}{5}\) = 6

\(\sum |x - \bar{x}|\)

= 10

Mean deviation = \(\frac{10}{5}\)

= 2

183.

If the mean of 2, 5, (x + 1), (x + 2), 7 and 9 is 6, find the median.

A.

6.5

B.

6.0

C.

5.5

D.

5.0

Correct answer is C

\(\frac{1 + 5 + x + 6 + x + 2 + 7 + 9}{6}\) = 6

26 + 2x = 36 

2x = 36 - 26

2x = 10 

x = \(\frac{10}{2}\) = 5

2, 5, 6, 7, 7, 9

Median = \(\frac{6 + 7}{2}\) = 6.5 

184.

Find the coordinates of the point in the curve y = 3x\(^2\) - 2x - 5 where the tangent is parallel to the line y = - 5 = 8x

A.

\(\begin{pmatrix} - \frac{5}{3} &, 0 \end {pmatrix}\)

B.

\(\begin{pmatrix} 0, & - \frac{5}{3} \end {pmatrix}\)

C.

\(\begin{pmatrix} 0, & \frac{5}{3} \end {pmatrix}\)

D.

\(\begin{pmatrix} \frac{5}{3} &, 0 \end {pmatrix}\)

Correct answer is D

y = 8x + 5 

m = 8

y = 3x\(^2\) - 2x - 5 

\(\frac{dy}{dx}\) = 6x - 2x - 5

\(\frac{6x}{6} = \frac{10}{6}\) 

x = \(\frac{5}{3}\)

y = 0