WAEC Mathematics Past Questions & Answers - Page 245

1,221.

Express as a single fraction: \(\frac{x}{x-2}-\frac{x+2}{x+3}\)

A.

\(\frac{2x^2 - 3x - 4}{(x-2)(x+3)}\)

B.

\(\frac{2x^2 + 3x - 4}{(x-2)(x+3)}\)

C.

\(\frac{2}{(x-2)(x+3)}\)

D.

\(\frac{ 3x + 4}{(x-2)(x+3)}\)

E.

\(\frac{3x - 4}{(x-2)(x+3)}\)

Correct answer is D

\(\frac{x}{x-2}-\frac{x+2}{x+3}\)

\(\frac{[x][x+3] - [x+2][x-2]}{[x-2][x+3]}\)

= \(\frac{x^2 + 3x - x^2 - 4}{[x-2][x+3]}\)

=  \(\frac{3x - 4}{[x-2][x+3]}\)

1,222.

In the diagram above, O is the center if the two concentric circle of radii 13cm and 10cm respectively. Find the area of the shaded portion in the sector with angle 1200 at the center

A.

\(\frac{1}{3}\pi cm^2\)

B.

\(\pi cm^2\)

C.

\(3\pi cm^2\)

D.

\(23\pi cm^2\)

E.

\(46\pi cm^2\)

Correct answer is D

\(\frac{120\pi}{360}(R^2 - r^2)\\
\frac{1}{3}\times \pi (13^2 - 10^2)\\
\frac{1}{3}\times \pi \times 69 = 23\pi cm^2\)

1,223.

The radius of a geographical globe is 60cm. Find the length of the parallel of latitude 60oN

A.

\(66\pi cm\)

B.

\(60\pi cm\)

C.

\(30\pi cm\)

D.

\(15\pi cm\)

E.

\(6\pi cm\)

Correct answer is B

No explanation has been provided for this answer.

1,224.

Given that \(\frac{6x-y}{x+2y}=2\), find the value of \(\frac{x}{y}\)

A.

\(\frac{3}{8}\)

B.

\(\frac{5}{8}\)

C.

\(\frac{4}{5}\)

D.

\(\frac{5}{4}\)

E.

\(\frac{8}{5}\)

Correct answer is D

\(\frac{6x-y}{x+2y}=2\)

→ \((6x-y) = (x+2y)2\)

= 6x - y = 2x + 4y

Collect like terms: 6x - 2x = 4y + y

→ 4x = 5y

 \(\frac{x}{y} =  \frac{4}{5}\)

1,225.

If h(m+n) = m(h+r) find h in terms of m, n and r

A.

\(h=\frac{mr}{2m+n}\)

B.

\(h=\frac{mr}{n+m}\)

C.

\(h=\frac{m+n}{n}\)

D.

\(h=\frac{m+n}{m}\)

E.

\(h=\frac{mr}{n}\)

Correct answer is E

\(h(m+n) = m(h+r)\\
hm+hn=hm+mr\\
hn=mr\\
h=\frac{mr}{n}\)