3
4
5
6
Correct answer is A
No. of times = \(\frac{\text{Total distance}}{\text{Circumference of circle}}\)
= \(\frac{\text{Total distance}}{\pi d}\)
= \(\frac{1000m}{\frac{22}{7} \times 100m}\)
= \(\frac{1000 \times 7}{2200} = 3.187\)
= 3(approx.) nearest whole no.
The nth term of the sequence -2, 4, -8, 16.... is given by
Tn = 2n
Tn = (-2)n
Tn = (-2n)
Tn = n
Correct answer is B
sequence: -2, 4, -8, 16........{GP}
a = -2; r = \(\frac{4}{-2}\) = -2
nth term Tn = arn-1
Tn = (-2)(-2)^n-1
Tn = (-2)1 + n - 1
Tn = (-2)n
If y = \(\frac{(2\sqrt{x^2 + m})}{3N}\), make x the subject of the formular
\(\frac{\sqrt{9y^2 N^2 - 2m}}{3}\)
\(\frac{\sqrt{9y^2 N^2 - 4m}}{2}\)
\(\frac{\sqrt{9y^2 N^2 - 3m}}{2}\)
\(\frac{\sqrt{9y^2 N - 3m}}{2}\)
Correct answer is B
y = \(\frac{(2\sqrt{x^2 + m})}{3N}\)
3yN = 2(\(\sqrt{x^2 + m})\)
\(\frac{3yN}{2} = \sqrt{x^2 + m}\)
(\(\frac{3yN}{2})^2 = ( \sqrt{x^2 + m})\)
\(\sqrt{\frac{9y^2N^2}{4} - \frac{m}{1}}\)
x = \(\frac{\sqrt{9Y^2N^2 - 4m}}{4}\)
x = \(\frac{\sqrt{9y^2N^2 - 4m}}{2}\)
The sum of the exterior of an n-sided convex polygon is half the sum of its interior angle. find n
6
8
9
12
Correct answer is A
sum of exterior angles = 360o
Sum of interior angle = (n - 2) x 180
360 = \(\frac{1}{2}\) x(n - 2) x 180(90o)
360 = \(\frac{1}{2}\) x(n - 2) x 90o
\(\frac{360}{90}\) = a - 2
4 = n - 2
n = 4 + 2 = 6
Simplify \(\frac{2}{2 + x} + \frac{2}{2 - x}\)
\(\frac{4}{4 - x^3}\)
\(\frac{8}{4 - x^2}\)
\(\frac{4x}{4 - x^2}\)
\(\frac{8 - 4x}{4 - x^2}\)
Correct answer is B
\(\frac{2}{2 + x} + \frac{2}{2 - x}\)
\(\frac{2(2 - x) + 2(2 + x)}{(2 + x)(2 - x)} = \frac{4 - 2x + 4 + 2x}{4 - 2x + 2x - x^2}\)
= \(\frac{8}{4 - x^2}\)