If y = \(\frac{(2\sqrt{x^2 + m})}{3N}\), make x the subject of the formular

A.

\(\frac{\sqrt{9y^2 N^2 - 2m}}{3}\)

B.

\(\frac{\sqrt{9y^2 N^2 - 4m}}{2}\)

C.

\(\frac{\sqrt{9y^2 N^2 - 3m}}{2}\)

D.

\(\frac{\sqrt{9y^2 N - 3m}}{2}\)

Correct answer is B

y = \(\frac{(2\sqrt{x^2 + m})}{3N}\)

3yN = 2(\(\sqrt{x^2 + m})\)

\(\frac{3yN}{2} = \sqrt{x^2 + m}\)

(\(\frac{3yN}{2})^2 = ( \sqrt{x^2 + m})\)

\(\sqrt{\frac{9y^2N^2}{4} - \frac{m}{1}}\)

x = \(\frac{\sqrt{9Y^2N^2 - 4m}}{4}\)

x = \(\frac{\sqrt{9y^2N^2 - 4m}}{2}\)