WAEC Further Mathematics Past Questions & Answers - Page 126

626.

Find the coefficient of \(x^{3}\) in the expansion of \([\frac{1}{3}(2 + x)]^{6}\)

A.

\(\frac{135}{729}\)

B.

\(\frac{149}{729}\)

C.

\(\frac{152}{729}\)

D.

\(\frac{160}{729}\)

Correct answer is D

\([\frac{1}{3}(2 + x)]^{6} = (\frac{2}{3} + \frac{x}{3})^{6}\)

The coefficient of \(x^{3}\) is 

\(^{6}C_{3}(\frac{2}{3})^{3}(\frac{1}{3})^{3}x^{3} = (\frac{6!}{3!3!})(\frac{8}{27})(\frac{1}{27})x^{3}\)

= \(\frac{160}{729}\)

627.

Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)

A.

\(12\)

B.

\(2\frac{1}{2}\)

C.

\(2\)

D.

\(\frac{11}{24}\)

Correct answer is D

n = 3, \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!} = \frac{1}{(3-1)!} - \frac{1}{(3+1)!}\)

= \(\frac{1}{2} - \frac{1}{24} = \frac{12 -1}{24}\)

= \(\frac{11}{24}\)

628.

Simplify \(\frac{^{n}P_{5}}{^{n}C_{5}}\)

A.

80

B.

90

C.

110

D.

120

Correct answer is D

\(\frac{^{n}P_{5}}{^{n}C_{5}} = \frac{n!}{(n-5)!} ÷ \frac{n!}{(n-5)!5!}\)

= \(\frac{n!}{(n-5)!} \times \frac{(n-5)!5!}{n!} = 5! = 120\)

629.

If \(\log_{10}y + 3\log_{10}x \geq \log_{10}x\), express y in terms of x.

A.

\(y \geq \frac{1}{x}\)

B.

\(y \leq \frac{1}{x}\)

C.

\(y \leq \frac{1}{x^{2}}\)

D.

\(y \geq \frac{1}{x^{2}}\)

Correct answer is D

\(\log_{10}y + 3\log_{10}x \geq \log_{10}x\)

\(\implies \log_{10}y \geq \log_{10}x - 3 \log_{10}x \)

\(\log_{10}y \geq -2\log_{10}x = \log_{10}y \geq \log_{10}x^{-2}\)

\(\log_{10}y \geq \log_{10}(\frac{1}{x^{2}}) \implies y \geq \frac{1}{x^{2}}\)

630.

Solve for x in the equation \(5^{x} \times 5^{x + 1} = 25\)

A.

\(-2\)

B.

\(\frac{-1}{2}\)

C.

\(\frac{1}{2}\)

D.

\(2\)

Correct answer is C

\(5^{x} \times 5^{x+1} = 25\)

\(5^{x} \times 5^{x+1} = 5^{2}\)

\(5^{x+x+1} = 5^{2}\), equating powers,

\(2x + 1 = 2 \implies 2x = 1\)

\(\therefore x = \frac{1}{2}\)