\(y \geq \frac{1}{x}\)
\(y \leq \frac{1}{x}\)
\(y \leq \frac{1}{x^{2}}\)
\(y \geq \frac{1}{x^{2}}\)
Correct answer is D
\(\log_{10}y + 3\log_{10}x \geq \log_{10}x\)
\(\implies \log_{10}y \geq \log_{10}x - 3 \log_{10}x \)
\(\log_{10}y \geq -2\log_{10}x = \log_{10}y \geq \log_{10}x^{-2}\)
\(\log_{10}y \geq \log_{10}(\frac{1}{x^{2}}) \implies y \geq \frac{1}{x^{2}}\)
Simplify \(\frac{x^{3n + 1}}{x^{2n + \frac{5}{2}}(x^{2n - 3})^{\frac{1}{2}}}\)...
Consider the following statements: X: Benita is polite y: Benita is neat z: Benita is intel...
Express \(\frac{13}{4}\pi\) radians in degrees....