Processing math: 58%

WAEC Further Mathematics Past Questions & Answers - Page 125

621.

If |m2m+1m+4m2|=27, find the value of m.

A.

389

B.

3

C.

212

D.

2

Correct answer is B

|m2m+1m+4m2|=27

(m24m+4)(m2+5m+4)=27

9m=27m=3

622.

Given that 6,212,...,71 is a linear sequence , calculate the number of terms in the sequence. 

A.

20

B.

21

C.

22

D.

23

Correct answer is D

Tn=a+(n1)d (for a linear or arithmetic progression)

Given: Tn=71,a=6,d=212(6)=312

71=6+(n1)×312

71=6+312n312=912+312n

71+912=312nn=8012312

=23

623.

The 3rd and 6th terms of a geometric progression (G.P.) are 83 and 6481 respectively, find the common ratio.

A.

13

B.

23

C.

34

D.

43

Correct answer is B

Tn=arn1 (for a geometric progression)

T3=ar31=ar2=83

T6=ar61=ar5=6481

Dividing T6 by T3,

ar5ar2=648183r3=827

624.

Find the fourth term in the expansion of (3x - y)^{6}.

A.

-540x^{3}y^{3}

B.

-540x^{4}y^{2}

C.

-27x^{3}y^{3}

D.

540x^{4}y^{2}

Correct answer is A

Listing out in order, the terms of this expansion have coefficients: ^{6}C_{6}, ^{6}C_{5}, ^{6}C_{4}, ^{6}C_{3}, ^{6}C_{2}, ^{6}C_{1}, ^{6}C_{0}

The 4th term = ^{6}C_{3}(3x)^{3}(-y)^{3}  = 20 \times 27x^{3} \times -y^{3}

= -540x^{3}y^{3}.

625.

Find the coefficient of x^{3} in the expansion of [\frac{1}{3}(2 + x)]^{6}

A.

\frac{135}{729}

B.

\frac{149}{729}

C.

\frac{152}{729}

D.

\frac{160}{729}

Correct answer is D

[\frac{1}{3}(2 + x)]^{6} = (\frac{2}{3} + \frac{x}{3})^{6}

The coefficient of x^{3} is 

^{6}C_{3}(\frac{2}{3})^{3}(\frac{1}{3})^{3}x^{3} = (\frac{6!}{3!3!})(\frac{8}{27})(\frac{1}{27})x^{3}

= \frac{160}{729}