WAEC Further Mathematics Past Questions & Answers - Page 119

591.

Given that \(f : x \to \frac{2x - 1}{x + 2}, x \neq -2\), find \(f^{-1}\), the inverse of f

A.

\(f^{-1} : x \to \frac{1+2x}{2-x}, x \neq 2\)

B.

\(f^{-1} : x \to \frac{1-2x}{x+2}, x \neq -2\)

C.

\(f^{-1} : x \to \frac{1-2x}{x-2}, x \neq 2\)

D.

\(f^{-1} : x \to \frac{1+2x}{x+2}, x \neq -2\)

Correct answer is A

\(f(x) = \frac{2x - 1}{x + 2}\)

\(y = \frac{2x - 1}{x + 2}\)

\(x = \frac{2y - 1}{y + 2} \implies x(y + 2) = 2y - 1\)

\(xy - 2y = -1 - 2x  \implies y = \frac{-1 - 2x}{x - 2}\)

\(f^{-1} : x \to \frac{1 + 2x}{2 - x} ; x \neq 2\)

592.

Which of the following is a factor of the polynomial \(6x^{4} + 2x^{3} + 15x + 5\)?

A.

3x + 1

B.

x + 1

C.

2x + 1

D.

x + 2

Correct answer is A

Using the remainder theorem, if (x - a) is a factor of f(x), then f(a) = 0.

Check the options and get the answer.

593.

Given that \(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}\) and \(Q = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}\), find PQ - QP

A.

\(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\)

B.

\(\begin{pmatrix} 27 & 12 \\ 16 & -15 \end{pmatrix}\)

C.

\(\begin{pmatrix} -20 & -6 \\ 12 & -8 \end{pmatrix}\)

D.

\(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)

Correct answer is D

\(P = \begin{pmatrix} -2 & 1 \\ 3 & 4 \end{pmatrix}; Q = \begin{pmatrix} 5 & -3 \\ 2 & -1 \end{pmatrix}\)

= \(PQ = \begin{pmatrix} -10+2 & 6-1 \\ 15+8 & -9-4 \end{pmatrix}\)

= \(\begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix}\)

\(QP = \begin{pmatrix} -10-9 & 5-12 \\ -4-3 & 2-4 \end{pmatrix}\)

= \(\begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\) 

\(PQ - QP = \begin{pmatrix} -8 & 5 \\ 23 & -13 \end{pmatrix} - \begin{pmatrix} -19 & -7 \\ -7 & -2 \end{pmatrix}\)

= \(\begin{pmatrix} 11 & 12 \\ 30 & -11 \end{pmatrix}\)

594.

Given that \(\frac{2x}{(x + 6)(x + 3)} = \frac{P}{x + 6} + \frac{Q}{x + 3}\), find P and Q.

A.

P = 4 and Q = 2

B.

P = 2 and Q = 4

C.

P = 4 and Q = -2

D.

P = -2 and Q = 4

Correct answer is C

\(\frac{2x}{(x + 6)(x + 3)} = \frac{P}{x + 6} + \frac{Q}{x + 3}\)

\(\frac{2x}{(x + 6)(x + 3)} = \frac{P(x + 3) + Q(x + 6)}{(x + 6)(x + 3)}\)

Comparing equations, we have

\(2x = Px + 3P + Qx + 6Q\)

\(\implies 3P + 6Q = 0 ... (1) ; P + Q = 2 .... (2)\)

From equation (1), \(3P = -6Q  \implies P = -2Q\)

\(\therefore -2Q + Q = -Q = 2 \)

\(Q = -2\)

\(P = -2Q = -2(-2) = 4\)

\(P = 4, Q = -2\)

595.

Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\).

A.

25

B.

9

C.

7

D.

5

Correct answer is A

\(f : x \to x^{2} ; g : x \to x + 3\)

\(g(2) = 2 + 3 = 5\)

\(f o g(2) = f(5) = 5^{2} = 25\)