Processing math: 23%

WAEC Further Mathematics Past Questions & Answers - Page 111

551.

If (x+2) and (3x1) are factors of 6x3+x219x+6, find the third factor.

A.

2x3

B.

3x+1

C.

x2

D.

3x+2

Correct answer is A

To get the third factor, take the product of the other 2 factors and then divide the main equation by their product.

552.

Using the binomial expansion (1+x)6=1+6x+15x2+20x3+15x4+6x5+x6, find, correct to 3 dp, the value of (1.98)6

A.

64.245

B.

61.255

C.

60.255

D.

60.245

Correct answer is C

(1.98)6=(1+0.98)6=1+6(0.98)+15(0.98)2+20(0.98)3+15(0.98)4+6(0.98)5+(0.98)6

 

= 60.255

553.

Simplify \frac{1 + \sqrt{8}}{3 - \sqrt{2}}

A.

7 + \sqrt{2}

B.

7 + 7\sqrt{2}

C.

1 - 7\sqrt{2}

D.

1 + \sqrt{2}

Correct answer is D

\frac{1 + \sqrt{8}}{3 - \sqrt{2}}

Rationalizing by multiplying through with 3 + \sqrt{2},

(\frac{1 + \sqrt{8}}{3 - \sqrt{2}})(\frac{3 + \sqrt{2}}{3 + \sqrt{2}}) = \frac{3 + \sqrt{2} + 3\sqrt{8} + 4}{9 - 2}

= \frac{3 + \sqrt{2} + 3\sqrt{4 \times 2} + 4}{7}

= \frac{7 + 7\sqrt{2}}{7} = 1 + \sqrt{2}

554.

If 8^{x} ÷ (\frac{1}{4})^{y} = 1 and \log_{2}(x - 2y) = 1, find the value of (x - y)

A.

\frac{5}{4}

B.

\frac{3}{5}

C.

1

D.

\frac{2}{3}

Correct answer is A

8^{x} ÷ (\frac{1}{4})^{y} = 1

(2^{3})^{x} ÷ (2^{-2})^{y} = 2^{0}

2^{3x - (-2y)} = 2^{0}

\implies 3x + 2y = 0 .... (1)

\log_{2}(x - 2y) = 1

x - 2y = 2^{1} = 2 ..... (2)

Solving equations 1 and 2,

x = \frac{1}{2}, y = \frac{-3}{4}

(x - y) = \frac{1}{2} - \frac{-3}{4} = \frac{5}{4}

555.

If f(x) = 3x^{3} + 8x^{2} + 6x + k and f(2) = 1, find the value of k.

A.

-67

B.

-61

C.

61

D.

67

Correct answer is A

f(x) = 3x^{3} + 8x^{2} + 6x + k

f(2) = 3(2^{3}) + 8(2^{2}) + 6(2) + k = 1

\implies 24 + 32 + 12 + k = 1

68 + k = 1  \therefore k = 1 - 68 = -67