Loading [MathJax]/jax/element/mml/optable/MathOperators.js

WAEC Further Mathematics Past Questions & Answers - Page 108

536.

Find the angle between (5i+3j) and (3i5j)

A.

180°

B.

90°

C.

45°

D.

Correct answer is B

a.b=|a||b|cosθ

cosθ=a.b|a||b|

= (5i+3j).(3i5j)(52+32)(32+(5)2)

= 034=0

θ=cos10=90°

537.

Given that AB=(43) and AC=(23), find |BC|.

A.

42

B.

62

C.

210

D.

410

Correct answer is C

BC=BA+AC

Given, AB, then BA=AB

= AB=(43)BA=(43)

= \begin{pmatrix} -2 \\ -6 \end{pmatrix}

|BC| = \sqrt{(-2)^{2} + (-6)^{2}} = \sqrt{40}

= 2\sqrt{10}

538.

Integrate (x - \frac{1}{x})^{2} with respect to x.

A.

\frac{1}{3}(x - \frac{1}{x})^{3} + c

B.

\frac{x^{3}}{3} - x\sqrt{\frac{1}{x^{3}}} + c

C.

\frac{x^{3}}{3} - 2x + \frac{1}{x^{3}} + c

D.

\frac{x^3}{3} - 2x - \frac{1}{x} + c

Correct answer is D

(x - \frac{1}{x})^{2} = x^2 - 2 + \frac{1}{x^2}

\int (x^2 + \frac{1}{x^2} - 2) \mathrm {d} x

= \int (x^2 + x^{-2} - 2) \mathrm {d} x

= \frac{x^3}{3} - 2x - \frac{1}{x}

539.

If Px^{2} + (P+1)x + P = 0 has equal roots, find the values of P.

A.

\text{-1 and }\frac{-1}{3}

B.

\text{1 and }\frac{-1}{3}

C.

\text{-1 and }\frac{1}{3}

D.

\text{1 and }\frac{1}{3}

Correct answer is B

For equal roots, b^{2} - 4ac = 0

From the equation, a = P, b = (P+1), c = P

(P+1)^{2} - 4(P)(P) = P^{2} + 2P + 1 - 4P^{2} = 0

-3P^{2} + 2P + 1 = 0 \implies 3P^{2} - 2P - 1 = 0

3P^{2} - 3P + P - 1 = 0

3P(P - 1) + 1(P - 1) = 0

P = \text{1 or }\frac{-1}{3}

540.

Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34
Frequency 6 8 14 10 12

Find the mean of the distribution.

A.

23.4

B.

23.6

C.

24.3

D.

24.6

Correct answer is B

Age in years

Classmark

(x)

Frequency

(f)

fx
10 - 14 12 6 72
15 - 19 17 8 136
20 - 24 22 14 308
25 - 29 27 10 270
30 - 34 32 12 384
Total   50 1170

Mean = \frac{\sum fx}{\sum f}

= \frac{1170}{50} = 23.4