Processing math: 41%

WAEC Further Mathematics Past Questions & Answers - Page 104

516.

Express log18+log12 in terms of log2

A.

3 log 2

B.

4 log 2

C.

-3 log 2

D.

-4 log 2

Correct answer is D

log18+log12=log81+log21

= log23+log21

= 3log21log2=4log2

517.

Given that a56×a1n=1, solve for n

A.

-6.00

B.

-1.20

C.

0.83

D.

1.20

Correct answer is D

a56×a1n=1

a56+1n=a0

Equating bases, we have

561n=0

5n66n=0

5n6=05n=6

n=65=1.20

518.

Solve: sinθ=tanθ

A.

200°

B.

90°

C.

60°

D.

Correct answer is D

sinθ=tanθsinθ1=sinθcosθ

Equating, we have

cosθ=1θ=cos11

=

519.

A binary operation * is defined on the set of real numbers, R, by x * y = x + y - xy. If the identity element under the operation * is 0, find the inverse of x \in R.

A.

\frac{-x}{1 - x}, x \neq 1

B.

\frac{1}{1 - x}, x \neq 1

C.

\frac{-1}{1 - x}, x \neq 1

D.

\frac{x}{1 - x}, x \neq 1

Correct answer is A

x * y = x + y - xy

Let x^{-1} be the inverse of x, so that

x * x^{-1} = x + x^{-1} - x(x^{-1}) = 0

x + x^{-1} - x(x^{-1}) = 0 \implies x(x^{-1}) - x^{-1} = x

x^{-1}(x - 1) = x \implies x^{-1} = \frac{x}{x - 1}

= \frac{x}{-(1 - x)} = \frac{-x}{1 - x}, x \neq 1 

520.

Express (14N, 240°) as a column vector.

A.

\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}

B.

\begin{pmatrix} 7\sqrt{3} \\ 7\sqrt{3} \end{pmatrix}

C.

\begin{pmatrix} -7\sqrt{3} \\ -7 \end{pmatrix}

D.

\begin{pmatrix} 7 \\ -7\sqrt{3} \end{pmatrix}

Correct answer is A

F = \begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix} = \begin{pmatrix} F\cos \theta \\ F\sin \theta \end{pmatrix}

(14N, 240°) = \begin{pmatrix} 14\cos 240 \\ 14\sin 240 \end{pmatrix}

= \begin{pmatrix} 14 \times -0.5 \\ 14 \times \frac{-\sqrt{3}}{2} \end{pmatrix}

= \begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}