\(\frac{-x}{1 - x}, x \neq 1\)
\(\frac{1}{1 - x}, x \neq 1\)
\(\frac{-1}{1 - x}, x \neq 1\)
\(\frac{x}{1 - x}, x \neq 1\)
Correct answer is A
\(x * y = x + y - xy\)
Let \(x^{-1}\) be the inverse of x, so that
\(x * x^{-1} = x + x^{-1} - x(x^{-1}) = 0\)
\(x + x^{-1} - x(x^{-1}) = 0 \implies x(x^{-1}) - x^{-1} = x\)
\(x^{-1}(x - 1) = x \implies x^{-1} = \frac{x}{x - 1}\)
= \(\frac{x}{-(1 - x)} = \frac{-x}{1 - x}, x \neq 1\)
If →PQ = -2i + 5j and →RQ = -i - 7j, find →PR ...
Given that \(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\), solve for n...
If \(\begin{pmatrix} 3 & 2 \\ 7 & x \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \be...
The table shows the operation * on the set {x, y, z, w}. * X Y Z W X Y Z X W ...
If \(\begin{vmatrix} m-2 & m+1 \\ m+4 & m-2 \end{vmatrix} = -27\), find the value of m...