-6.00
-1.20
0.83
1.20
Correct answer is D
\(a^{\frac{5}{6}} \times a^{\frac{-1}{n}} = 1\)
\(\implies a^{\frac{5}{6} + \frac{-1}{n}} = a^{0}\)
Equating bases, we have
\(\frac{5}{6} - \frac{1}{n} = 0\)
\(\frac{5n - 6}{6n} = 0\)
\(5n - 6 = 0 \implies 5n = 6\)
\(n = \frac{6}{5} = 1.20\)
The gradient ofy= 3x\(^2\) + 11x + 7 at P(x.y) is -1. Find the coordinates of P. ...
If (2t - 3s)(t - s) = 0, find \(\frac{t}{s}\)...
If \(V = \begin{pmatrix} -2 \\ 4 \end{pmatrix}\) and \(U = \begin{pmatrix} ...
Find the coefficient of x\(^3\)y\(^2\) in the binomial expansion of (x-2y)\(^5\)...
If the determinant of the matrix \(\begin{pmatrix} 2 & x \\ 3 & 5 \end{pmatrix} = 13\), find...
Find the constant term in the binomial expansion of \((2x - \frac{3}{x})^{8}\)....
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...