Processing math: 59%

WAEC Further Mathematics Past Questions & Answers - Page 103

511.

Given that f(x)=2x33x211x+6 and f(3)=0, factorize f(x)

A.

(x - 3)(x - 2)(2x + 2)

B.

(x + 3)(x - 2)(x - 1)

C.

(x - 3)(x + 2)(2x -1)

D.

(x + 3)(x - 2)(2x - 1)

Correct answer is C

Since f(3) = 0, then (x - 3) is a factor of f(x).

Dividing f(x) by (x - 3), we get 2x2+3x2.

2x2+3x2=2x2x+4x2

x(2x1)+2(2x1)=(x+2)(2x1)

Therefore, f(x)=(x3)(x+2)(2x1)

512.

If α and β are the roots of the equation 2x26x+5=0, evaluate βα+αβ

A.

245

B.

85

C.

58

D.

524

Correct answer is B

2x26x+5=0a=2,b=6,c=5

α+β=ba=(6)2=3

αβ=ca=52

βα+αβ=β2+α2αβ

(α+β)22αβαβ=322(52)52

= 452=85

513.

If x+x+1=2x+1, find the possible values of x.

A.

1 and -1

B.

-1 and 2

C.

1 and 2

D.

0 and -1

Correct answer is D

x+x+1=2x+1

Squaring both sides, we have

(x+x+1)2=(2x+1)2

x+2x(x+1)+x+1=2x+1

2x+1+2x(x+1)(2x+1)=0

(2x(x+1))2=024(x(x+1))=0

x = \text{0 or -1}

514.

Find the third term in the expansion of (a - b)^{6} in ascending powers of b.

A.

-15a^{4}b^{2}

B.

15a^{4}b^{2}

C.

-15a^{3}b^{3}

D.

15a^{3}b^{3}

Correct answer is B

(a - b)^{6} = ^{6}C_{0}(a)^{6}(-b)^{0} + ^{6}C_{1}(a)^{5}(-b)^{1} + ^{6}C_{2}(a)^{4}(-b)^{2} + ...

Third term = ^{6}C_{2}(a)^{4}(-b)^{2} = \frac{6!}{(6-2)! 2!}(a^4)(b^2)

= 15a^{4}b^{2}

515.

If f(x) = x^{2}  and g(x) = \sin x, find g o f.

A.

\sin^{2} x

B.

\sin x^{2}

C.

(\sin x)x^{2}

D.

x \sin x

Correct answer is B

f(x) = x^{2}, g(x) = \sin x

g \circ f = g(x^{2}) = \sin x^{2}