Given that f(x)=2x3−3x2−11x+6 and f(3)=0, factorize f(x)
(x - 3)(x - 2)(2x + 2)
(x + 3)(x - 2)(x - 1)
(x - 3)(x + 2)(2x -1)
(x + 3)(x - 2)(2x - 1)
Correct answer is C
Since f(3) = 0, then (x - 3) is a factor of f(x).
Dividing f(x) by (x - 3), we get 2x2+3x−2.
2x2+3x−2=2x2−x+4x−2
x(2x−1)+2(2x−1)=(x+2)(2x−1)
Therefore, f(x)=(x−3)(x+2)(2x−1)
If α and β are the roots of the equation 2x2−6x+5=0, evaluate βα+αβ
245
85
58
524
Correct answer is B
2x2−6x+5=0⟹a=2,b=−6,c=5
α+β=−ba=−(−6)2=3
αβ=ca=52
βα+αβ=β2+α2αβ
(α+β)2−2αβαβ=32−2(52)52
= 452=85
If √x+√x+1=√2x+1, find the possible values of x.
1 and -1
-1 and 2
1 and 2
0 and -1
Correct answer is D
√x+√x+1=√2x+1
Squaring both sides, we have
(√x+√x+1)2=(√2x+1)2
x+2√x(x+1)+x+1=2x+1
2x+1+2√x(x+1)−(2x+1)=0
(2√x(x+1))2=02⟹4(x(x+1))=0
∴
x = \text{0 or -1}
Find the third term in the expansion of (a - b)^{6} in ascending powers of b.
-15a^{4}b^{2}
15a^{4}b^{2}
-15a^{3}b^{3}
15a^{3}b^{3}
Correct answer is B
(a - b)^{6} = ^{6}C_{0}(a)^{6}(-b)^{0} + ^{6}C_{1}(a)^{5}(-b)^{1} + ^{6}C_{2}(a)^{4}(-b)^{2} + ...
Third term = ^{6}C_{2}(a)^{4}(-b)^{2} = \frac{6!}{(6-2)! 2!}(a^4)(b^2)
= 15a^{4}b^{2}
If f(x) = x^{2} and g(x) = \sin x, find g o f.
\sin^{2} x
\sin x^{2}
(\sin x)x^{2}
x \sin x
Correct answer is B
f(x) = x^{2}, g(x) = \sin x
g \circ f = g(x^{2}) = \sin x^{2}