1 and -1
-1 and 2
1 and 2
0 and -1
Correct answer is D
\(\sqrt{x} + \sqrt{x + 1} = \sqrt{2x + 1}\)
Squaring both sides, we have
\((\sqrt{x} + \sqrt{x + 1})^{2} = (\sqrt{2x + 1})^{2}\)
\(x + 2\sqrt{x(x + 1)} + x + 1 = 2x + 1\)
\(2x + 1 + 2\sqrt{x(x+1)} - (2x + 1) = 0\)
\((2\sqrt{x(x + 1)})^{2}= 0^{2} \implies 4(x(x + 1)) = 0\)
\(\therefore x(x + 1) = 0\)
\(x = \text{0 or -1}\)
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
A curve is given by \(y = 5 - x - 2x^{2}\). Find the equation of its line of symmetry....
Find the coefficient of \(x^{4}\) in the binomial expansion of \((2 + x)^{6}\)...
Simplify \(\frac{\sqrt{3} + \sqrt{48}}{\sqrt{6}}\)...
A force of 30 N acts at an angle of 60° on a body of mass 6 kg initially at rest on a smooth hor...