Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)

A.

(x - 3)(x - 2)(2x + 2)

B.

(x + 3)(x - 2)(x - 1)

C.

(x - 3)(x + 2)(2x -1)

D.

(x + 3)(x - 2)(2x - 1)

Correct answer is C

Since f(3) = 0, then (x - 3) is a factor of f(x).

Dividing f(x) by (x - 3), we get \(2x^{2} + 3x - 2\).

\(2x^{2} + 3x - 2 = 2x^{2} - x + 4x - 2\)

\(x(2x - 1) + 2(2x - 1) = (x + 2)(2x - 1)\)

Therefore, \(f(x) = (x - 3)(x + 2)(2x -1)\)