Processing math: 100%

JAMB Mathematics Past Questions & Answers - Page 6

26.

Find the area and perimeter of a square whose length of diagonals is 202 cm

A.

800 cm2, 80 cm

B.

400 cm, 80 cm2

C.

80 cm, 800 cm2

D.

400 cm2, 80 cm

Correct answer is D

Using Pythagoras theorem

(202)2=x2+x2

⇒ 800 = 2x2

⇒ 400 = x2

⇒ x = 400 = 20 cm

∴ Area of a square = x2=202=400cm2

∴ Perimeter of a square = 4x = 4 x 20 = 80 cm

27.

Find the volume of the composite solid above.

A.

2048 cm3

B.

2568 cm3

C.

2672 cm3

D.

1320 cm3

Correct answer is B

Volume of the composite solid = Volume of A + Volume of B

Volume of a cuboid = length x breadth x height

Volume of A = 6 x 26 x 8 = 1248 cm3

Volume of B = 6 x 10 x 22 = 1320 cm3

∴ Volume of the composite solid = 1248 + 1320 = 2568 cm3

28.

Two dice are tossed. What is the probability that the total score is a prime number.

A.

512

B.

59

C.

16

D.

13

Correct answer is A

Total possible outcome = 6 x 6 = 36

Required outcome = 15

∴ Pr(E) = 1536=512

29.

The difference between an exterior angle of (n - 1) sided regular polygon and an exterior angle of (n + 2) sided regular polygon is 6o, then the value of "n" is

A.

11

B.

13

C.

12

D.

14

Correct answer is B

An exterior angle of a n-sided regular polygon = 360n

For (n - 1) sided regular polygon = 360n1

For (n + 2) sided regular polygon = 360n+1

360n1360n+2 = 6 9Given)

360(n+2)360(n1)(n1)(n+2)

360n+720360n+360(n1)(n+2)

1080(n1)(n+2)=61

⇒ 1080 = 6 (n - 1)(n + 2)

⇒ 180 = (n - 1)(n + 2)

⇒ 180 = n2+ 2n - n - 2

⇒ 180 = n2 + n - 2

⇒ n2b+ n - 2 - 180 = 0

⇒ n2 + n - 182 = 0

⇒ n2 + 14n - 13n - 182 = 0

⇒ n (n + 14) - 13 (n + 14) = 0

⇒ (n - 13) (n + 14) = 0

⇒ n - 13 = 0 or n + 14 = 0

⇒ n = 13 or n = -14

∴ n = 13 (We can't have a negative number of side)

30.

A student is using a graduated cylinder to measure the volume of water and reports a reading of 18 mL. The teacher reports the value as 18.4 mL. What is the student's percent error?

A.

2.17%

B.

1.73%

C.

2.23%

D.

1.96%

Correct answer is A

% error = ErrorActualValue x 100%

Student's Value = 18mL

Actual Value = 18.4mL

Error = 18.4 - 18 = 0.4

∴ % error = 0.418.4 x 100% = 2.17%