800 cm\(^2\), 80 cm
400 cm, 80 cm\(^2\)
80 cm, 800 cm\(^2\)
400 cm\(^2\), 80 cm
Correct answer is D
Using Pythagoras theorem
⇒ \((20\sqrt2)2 = x^2 + x^2\)
⇒ 800 = \(2x^2\)
⇒ 400 = \(x^2\)
⇒ x = \(\sqrt400\) = 20 cm
∴ Area of a square = \(x^2 = 20^2 = 400 cm^2\)
∴ Perimeter of a square = 4x = 4 x 20 = 80 cm
Simplify \(\sqrt{6a} \times \sqrt{576a^6}\)...
If sin \(\theta\) = cos \(\theta\), find \(\theta\) between 0° and 360° ...
Solve the equation 5x2 - 4x - 1 = 0...
In the figure, PQR is a straight line. Find the values of x and y ...
Find the value of k in the equation: \(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)...
Simplify (1 + \(\frac{\frac{x - 1}{1}}{\frac{1}{x + 1}}\))(x + 2)...