If \(6x^3 + 2x^2 - 5x + 1\) divides \(x^2 - x - 1\), find the remainder.
9x + 9
2x + 6
6x + 8
5x - 3
Correct answer is A
No explanation has been provided for this answer.
\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)
\(\frac{31}{50}\)
\(\frac{20}{31}\)
\(\frac{31}{20}\)
\(\frac{50}{31}\)
Correct answer is D
\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)
\(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4}\)
= \(\frac{5}{6}\)
\(\frac{1}{4} + \frac{3}{5} - \frac{1}{3} = \frac{15 + 36 - 20}{60}\)
= \(\frac{31}{60}\)
\(\therefore \frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}} = \frac{5}{6} \div \frac{31}{60}\)
= \(\frac{5}{6} \times \frac{60}{31}\)
= \(\frac{50}{31}\)
Given \(\sin 58° = \cos p°\), find p.
48°
58°
32°
52°
Correct answer is C
\(\sin \theta = \cos (90 - \theta)\)
\(\sin \theta = \cos (90 - 58)\)
= \(\cos 32\)
Find the length of the chord |AB| in the diagram shown above.
4.2 cm
4.3 cm
3.2 cm
3.4 cm
Correct answer is D
Length of chord = \(2r \sin (\frac{\theta}{2})\)
= \(2(3) \sin (\frac{68}{2})\)
= \(6 \sin 34\)
= \(6 \times 0.559\)
= 3.354 cm \(\approxeq\) 3.4 cm
Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)
\(-5 - 2\sqrt{6}\)
\(-5 + 3\sqrt{2}\)
\(5 - 2\sqrt{3}\)
\(5 + 2\sqrt{6}\)
Correct answer is A
\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)
= \((\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}})(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}})\)
= \(\frac{2 + \sqrt{6} + \sqrt{6} + 3}{2 - \sqrt{6} + \sqrt{6} - 3}\)
= \(\frac{5 + 2\sqrt{6}}{-1}\)
= \(- 5 - 2\sqrt{6}\)