JAMB Mathematics Past Questions & Answers - Page 58

286.

If \(6x^3 + 2x^2 - 5x + 1\) divides \(x^2 - x - 1\), find the remainder.

A.

9x + 9

B.

2x + 6

C.

6x + 8

D.

5x - 3

Correct answer is A

No explanation has been provided for this answer.

287.

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

A.

\(\frac{31}{50}\)

B.

\(\frac{20}{31}\)

C.

\(\frac{31}{20}\)

D.

\(\frac{50}{31}\)

Correct answer is D

\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)

\(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4}\)

= \(\frac{5}{6}\)

\(\frac{1}{4} + \frac{3}{5} - \frac{1}{3} = \frac{15 + 36 - 20}{60}\)

= \(\frac{31}{60}\)

\(\therefore \frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}} = \frac{5}{6} \div \frac{31}{60}\)

= \(\frac{5}{6} \times \frac{60}{31}\)

= \(\frac{50}{31}\)

288.

Given \(\sin 58° = \cos p°\), find p.

A.

48°

B.

58°

C.

32°

D.

52°

Correct answer is C

\(\sin \theta = \cos (90 - \theta)\)

\(\sin \theta = \cos (90 - 58)\)

= \(\cos 32\)

289.

Find the length of the chord |AB| in the diagram shown above.

A.

4.2 cm

B.

4.3 cm

C.

3.2 cm

D.

3.4 cm

Correct answer is D

Length of chord = \(2r \sin (\frac{\theta}{2})\)

= \(2(3) \sin (\frac{68}{2})\)

= \(6 \sin 34\)

= \(6 \times 0.559\)

= 3.354 cm \(\approxeq\)  3.4 cm

290.

Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

A.

\(-5 - 2\sqrt{6}\)

B.

\(-5 + 3\sqrt{2}\)

C.

\(5 - 2\sqrt{3}\)

D.

\(5 + 2\sqrt{6}\)

Correct answer is A

\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

= \((\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}})(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}})\)

= \(\frac{2 + \sqrt{6} + \sqrt{6} + 3}{2 - \sqrt{6} + \sqrt{6} - 3}\)

= \(\frac{5 + 2\sqrt{6}}{-1}\)

= \(- 5 - 2\sqrt{6}\)