\(2x^{2} - \frac{1}{x} + k\)
\(-\frac{1}{2x^{2}} - \frac{1}{x} + k\)
\(-\frac{x^{2}}{2} - \frac{1}{x} + k\)
\(x^{2} - \frac{1}{x} + k\)
Correct answer is B
\(\int \frac{1 + x}{x^{3}} \mathrm d x\)
= \(\int (\frac{1}{x^{3}} + \frac{x}{x^{3}}) \mathrm d x\)
= \(\int (x^{-3} + x^{-2}) \mathrm d x\)
= \(\frac{-1}{2x^{2}} - \frac{1}{x} + k\)
In the figure, find angle x ...
Rationalize \(\frac{2\sqrt{3} + 3 \sqrt{2}}{3\sqrt{2} - 2 \sqrt{3}}\)...
Find the curved surface area of the frustrum in the figure ...
Simplify \(\frac{3}{5} \div \left(\frac{2}{7} \times \frac{4}{3} \div \frac{4}{9}\right)\) ...
In the figure, GHIJKLMN is a cube of side a. Find the length of HN. ...
Which of the following is used to determine the mode of a grouped data? ...