JAMB Mathematics Past Questions & Answers - Page 55

271.

If \(f(x) = 3x^3 + 4x^2 + x - 8\), what is the value of f(-2)?

A.

-24

B.

30

C.

-18

D.

-50

Correct answer is C

\(f(x) = 3x^3 + 4x^2 + x - 8\)

\(f(-2) = 3(-2)^3 + 4(-2)^2 + (-2) - 8\)

= \(-24 + 16 - 2 - 8\)

= -18

272.

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) is equal to

A.

\(\frac{12x - 2}{4x^2}\)

B.

\(\frac{43x^2 - 2x}{7x}\)

C.

\(\frac{4x^2 - 2}{7x + 6}\)

D.

\(\frac{12x^2 - 2}{4x^3 - 2x}\)

Correct answer is D

\(\frac{d}{dx} [\log (4x^3 - 2x)]\) ... (1)

Let u = 4x\(^3\) - 2x.

\(\frac{\mathrm d}{\mathrm d x} (\log (4x^3 - 2x)) = (\frac{\mathrm d}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)

\(\frac{\mathrm d}{\mathrm d u} (\log u)\) = \(\frac{1}{u}\)

\(\frac{\mathrm d u}{\mathrm d x} = 12x^2 - 2\)

\(\therefore \frac{d}{dx} [\log (4x^3 - 2x)] = \frac{12x^2 - 2}{u}\)

= \(\frac{12x^2 - 2}{4x^3 - 2x}\)

 

273.

If \(y = 6x^3 + 2x^{-2} - x^{-3}\), find \(\frac{\mathrm d y}{\mathrm d x}\).

A.

\(\frac{\mathrm d y}{\mathrm d x} = 15x^2 - 4x^{-2} - 3x^{-2}\)

B.

\(\frac{\mathrm d y}{\mathrm d x} = 6x + 4x^{-1} - 3x^{-4}\)

C.

\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)

D.

\(\frac{\mathrm d y}{\mathrm d x} = 12x^2 + 4x^{-1} - 3x^{-2}\)

Correct answer is C

\(y = 6x^3 + 2x^{-2} - x^{-3}\)

\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)

274.

If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x.

A.

10

B.

30

C.

14

D.

28

Correct answer is A

\(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\)

\(\implies (2 \times 9) - (-4 \times x) = 58\)

\(18 + 4x = 58 \implies 4x = 58 - 18 = 40\)

\(x = 10\)

275.

If P(2, m) is the midpoint of the line joining Q(m, n) and R(n, -4), find the values of m and n.

A.

m = 0, n = 4

B.

m = 4, n = 0

C.

m = 2, n = 2

D.

m = -2, n = 4

Correct answer is A

Q(m, n) and R(n, -4)

Midpoint : P(2, m)

\(\implies (\frac{m + n}{2}, \frac{n - 4}{2}) = (2, m)\)

\(m + n = 2 \times 2 \implies m + n = 4 ... (i)\)

\(n - 4 = 2 \times m \implies n - 4 = 2m ... (ii)\)

Solving (i) and (ii) simultaneously,

m = 0 and n = 4.