\(\frac{31}{50}\)
\(\frac{20}{31}\)
\(\frac{31}{20}\)
\(\frac{50}{31}\)
Correct answer is D
\(\frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}}\)
\(\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4}\)
= \(\frac{5}{6}\)
\(\frac{1}{4} + \frac{3}{5} - \frac{1}{3} = \frac{15 + 36 - 20}{60}\)
= \(\frac{31}{60}\)
\(\therefore \frac{\frac{2}{3} \div \frac{4}{5}}{\frac{1}{4} + \frac{3}{5} - \frac{1}{3}} = \frac{5}{6} \div \frac{31}{60}\)
= \(\frac{5}{6} \times \frac{60}{31}\)
= \(\frac{50}{31}\)