Rationalize \(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

A.

\(-5 - 2\sqrt{6}\)

B.

\(-5 + 3\sqrt{2}\)

C.

\(5 - 2\sqrt{3}\)

D.

\(5 + 2\sqrt{6}\)

Correct answer is A

\(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}\)

= \((\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}})(\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}})\)

= \(\frac{2 + \sqrt{6} + \sqrt{6} + 3}{2 - \sqrt{6} + \sqrt{6} - 3}\)

= \(\frac{5 + 2\sqrt{6}}{-1}\)

= \(- 5 - 2\sqrt{6}\)