JAMB Mathematics Past Questions & Answers - Page 47

231.

Find the value of x for \(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)

A.

x \(\geq\) -5

B.

x \(\geq\) -1

C.

x \(\leq\) -1

D.

x \(\leq\) 3

Correct answer is C

\(\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}\)

\(\frac{2 + 2x - 6}{3} \geq \frac{4x - 6}{5}\)

\(\frac{2x - 4}{3} \geq \frac{4x - 6}{5}\)

\(5(2x - 4) \geq 3(4x - 6)\)

\(10x - 20 \geq 12x - 18\)

\(10x - 12x \geq -18 + 20\)

\(-2x \geq 2\)

\(x \leq -1\)

232.

Evaluate \(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)

A.

4

B.

-32

C.

-8

D.

16

Correct answer is C

\(\frac{2\log_{3} 9 \times \log_{3} 81^{-2}}{\log_{5} 625}\)

= \(\frac{2\log_3 3^2 \times \log_3 (3^4)^{-2}}{\log_5 (5^4)}\)

= \(\frac{4\log_3 3 \times -8\log_3 3}{4\log_5 5}\)

= -8.

233.

Find the value of k in the equation: \(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)

A.

\(\sqrt{28}\)

B.

7

C.

28

D.

\(\sqrt{7}\)

Correct answer is B

\(\sqrt{28} + \sqrt{112} - \sqrt{k} = \sqrt{175}\)

\(\sqrt{4 \times 7} + \sqrt{16 \times 7} - \sqrt{k} = \sqrt{25 \times 7}\)

\(2\sqrt{7} + 4\sqrt{7} - \sqrt{k} = 5\sqrt{7}\)

\(6\sqrt{7} - 5\sqrt{7} = \sqrt{k}\)

\(\sqrt{k} = \sqrt{7}\)

\(\implies k = 7\)

234.

In a committee of 5, which must be selected from 4 males and 3 females. In how many ways can the members be chosen if it were to include 2 females?

A.

144 ways

B.

15 ways

C.

185 ways

D.

12 ways

Correct answer is D

For the committee to include 2 females, we must have 3 males, so that there should be 5 members.

That is, \(^4C_3 \times ^3C_2\)

= \(\frac{4!}{(4 - 3)! 3!} \times \frac{3!}{(3 - 2)! 2!}\)

= 4 × 3 = 12 ways

235.

If the universal set μ = {x : 1 ≤ x ≤ 20} and
A = {y : multiple of 3}
B = |z : odd numbers}
Find A ∩ B

A.

{1, 3, 6}

B.

{3, 5, 9, 12}

C.

{3, 9, 15}

D.

{2, 3, 9}

Correct answer is C

μ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} A = {3, 6, 9, 12, 15, 18} B = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} A ∩ B = {3, 9, 15}