If |2−53x14032|=132, find the value of x.
5
8
6
3
Correct answer is B
|2−53x14032|=132
⟹2|1432|−(−5)|x402|+3|x103|=132
2(2−12)+5(2x)+3(3x)=132
−20+10x+9x=132
19x=152
x=8
If 2x2 + x - 3 divides x - 2, find the remainder.
7
3
5
6
Correct answer is A
When you divide a polynomial p(x) by (x - a), the remainder = p(a)
i.e. In the case of 2x2 + x - 3 ÷ (x - 2), the remainder = p(2).
= 2(2)2 + 2 - 3
= 8 + 2 - 3
= 7.
Find the polynomial if given q(x) = x2 - x - 5, d(x) = 3x - 1 and r(x) = 7.
3x3 - 4x2 - 14x + 12
3x2 + 3x - 7
3x3 + 4x2 + 14x - 12
3x2 - 3x + 4
Correct answer is A
Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x2 - x - 5)(3x - 1) + 7.
= (3x3 - x2 - 3x2 + x - 15x + 5) + 7
= (3x3 - 4x2 - 14x + 5) + 7
= 3x3 - 4x2 - 14x + 12
Determine the values for which x2−7x+10≤0
2 ≤ x ≥ 5
-2 ≤ x ≤ 3
-2 ≤ x ≥ 3
2 ≤ x ≤ 5
Correct answer is D
x2−7x+10≤0
Solve for x2−7x+10=0
We have, (x - 5)(x - 2) ≤ 0.
Conditions:
Case 1: (x - 5) ≤ 0, (x - 2) ≥ 0.
⟹ x ≤ 5; x ≥ 2.
2 ≤ x ≤ 5.
Choosing x = 3,
32 - 7(3) + 10 = 9 - 21 + 10
= -2 ≤ 0.
∴ 2 \leq x \leq 5.
Find the value of x for \frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}
x \geq -5
x \geq -1
x \leq -1
x \leq 3
Correct answer is C
\frac{2 + 2x}{3} - 2 \geq \frac{4x - 6}{5}
\frac{2 + 2x - 6}{3} \geq \frac{4x - 6}{5}
\frac{2x - 4}{3} \geq \frac{4x - 6}{5}
5(2x - 4) \geq 3(4x - 6)
10x - 20 \geq 12x - 18
10x - 12x \geq -18 + 20
-2x \geq 2
x \leq -1