3x\(^3\) - 4x\(^2\) - 14x + 12
3x\(^2\) + 3x - 7
3x\(^3\) + 4x\(^2\) + 14x - 12
3x\(^2\) - 3x + 4
Correct answer is A
Given q(x) [quotient], d(x) [divisor] and r(x) [remainder], the polynomial is gotten by multiplying the quotient and the divisor and adding the remainder.
i.e In this case, the polynomial = (x\(^2\) - x - 5)(3x - 1) + 7.
= (3x\(^3\) - x\(^2\) - 3x\(^2\) + x - 15x + 5) + 7
= (3x\(^3\) - 4x\(^2\) - 14x + 5) + 7
= 3x\(^3\) - 4x\(^2\) - 14x + 12
Find the value of 2a - b if a + b = 8 and 4a - b = 22 ...
Evaluate \(\frac{5}{8} - \frac{3}{4} ÷ \frac{5}{12} \times \frac{1}{4}\)...
The perimeter of an isosceles right-angled triangle is 2 meters. Find the length of its longer ...
Factorize completely; (2x + 2y)(x - y) + (2x - 2y)(x + y) ...
Find the quadratic equation whose roots are 3 and \(\frac{2}{3}\)....