0 > -\(\frac{1}{6}\)
x > 0
0 < x < 4
0 < x < \(\frac{1}{6}\)
Correct answer is D
\(\frac{1}{3x}\) + \(\frac{1}{2}\) > \(\frac{1}{4x}\)
= \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\)
= 4(2 + 3x) > 6x = 12x2 - 2x = 0
= 2x(6x - 1) > 0 = x(6x - 1) > 0
Case 1 (-, -) = x < 0, 6x -1 < 0
= x < 0, x < \(\frac{1}{6}\) = x < \(\frac{1}{6}\) (solution)
Case 2 (+, +) = x > 0, 6x -1 > 0 = x > 0, x > \(\frac{1}{6}\)
Combining solutions in cases(1) and (2)
= x > 0, x < \(\frac{1}{6}\) = 0 < x < \(\frac{1}{6}\)
Express in partial fractions \(\frac{11x + 2}{6x^2 - x - 1}\)
\(\frac{1}{3x - 1}\) + \(\frac{3}{2x + 1}\)
\(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
\(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
\(\frac{1}{3x + 1}\) + \(\frac{3}{2x - 1}\)
Correct answer is D
\(\frac{11x + 2}{6x^2 - x - 1}\) = \(\frac{11x + 2}{(3x + 1)(2x - 1)}\)
= \(\frac{A}{3x + 1}\) + \(\frac{B}{2x - 1}\)
11x + 2 = A(2x - 1) + B(3x + 1)
put x = \(\frac{1}{2}\)
\(\frac{15}{2} = \frac{5}{2}B\)
B = 3.
put x = \(-\frac{1}{3}\)
\(-\frac{5}{3} = \frac{-5}{3}\)A \(\implies\) A = 1
∴ \(\frac{11x +2}{6x^2 - x - 1}\) = \(\frac{1}{3x + 1}\) + \(\frac{3}{2x - 1}\)
Divide 2x\(^{3}\) + 11x\(^2\) + 17x + 6 by 2x + 1.
x2 + 5x + 6
2x2 + 5x - 6
2x2 + 5x + 6
x2 - 5x + 6
Correct answer is A
No explanation has been provided for this answer.
Make \(\frac{a}{x}\) the subject of formula \(\frac{x + 1}{x - a}\) = m
\(\frac{m - 1}{m + 1}\)
\(\frac{m + 1}{1 - m}\)
\(\frac{m - 1}{1 + m}\)
\(\frac{m + 1}{m - 1}\)
Correct answer is A
\(\frac{x + a}{x - a}\) = m
x + a = mx - ma
a + ma = mx - x
a(m + 1) = x(m - 1)
\(\frac{a}{x}\) = \(\frac{m - 1}{m + 1}\)
Solve for the equation \(\sqrt{x}\) - \(\sqrt{(x - 2)}\) - 1 = 0
\(\frac{3}{2}\)
\(\frac{2}{3}\)
\(\frac{4}{9}\)
\(\frac{9}{4}\)
Correct answer is D
\(\sqrt{x}\) - \(\sqrt{(x - 2)}\) - 1 = 0
= \(\sqrt{x}\) - \(\sqrt{(x - 2)}\) = 1
= (\(\sqrt{x}\) - \(\sqrt{(x - 2)}\))2 = 1
= x - 2 \(\sqrt{x(x - 2)}\) + x -2 = 1
= (2x - 3)2 = [2 \(\sqrt{x(x - 4)}\)]2
= 4x2 - 12x + 9
= 4(x2 - 2x)
= 4x2 - 12x + 9
= 4x2 - 8x
4x = 9
x = \(\frac{9}{4}\)