If cot\(\theta\) = \(\frac{8}{15}\), where \(\theta\) is acute, find sin\(\theta\)

A.

\(\frac{8}{17}\)

B.

\(\frac{15}{17}\)

C.

\(\frac{16}{17}\)

D.

\(\frac{13}{17}\)

Correct answer is B

cot\(\theta\) = \(\frac{1}{\cos \theta}\)

= \(\frac{8}{15}\)(given)

tan\(\theta\) = \(\frac{15}{18}\)

By Pythagoras theorem,

x2 = 152 + 82

x2 = 225 + 64 = 289

x = \(\sqrt{289}\)

= 17

Hence sin\(\theta\) = \(\frac{15}{x}\)

= \(\frac{15}{17}\)