\(\frac{8}{17}\)
\(\frac{15}{17}\)
\(\frac{16}{17}\)
\(\frac{13}{17}\)
Correct answer is B
cot\(\theta\) = \(\frac{1}{\cos \theta}\)
= \(\frac{8}{15}\)(given)
tan\(\theta\) = \(\frac{15}{18}\)
By Pythagoras theorem,
x2 = 152 + 82
x2 = 225 + 64 = 289
x = \(\sqrt{289}\)
= 17
Hence sin\(\theta\) = \(\frac{15}{x}\)
= \(\frac{15}{17}\)
Simplify \(\sqrt{27}\) + \(\frac{3}{\sqrt{3}}\)...
If sine x equals cosine x, what is x in radians?...
If x = 3 and y = -1, evaluate 2(x\(^2\) - y\(^2\))...
If x = \(\begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ -1 & 0 & 1\end{pmatrix}\...
Find the median of 2,3,7,3,4,5,8,9,9,4,5,3,4,2,4 and 5...
If \(log_a 3\) = m and \(log_a 5\) = p, find \(log_a 75\)...
Find the derivative of \(\frac {\sin\theta}{\cos\theta}\)...