JAMB Mathematics Past Questions & Answers - Page 3

11.

PQRS is a cyclic quadrilateral. Find \(x\) + \(y\)

A.

50

B.

60

C.

15

D.

0

Correct answer is D

∠PQR + ∠PSR = 180o (opp. angles of cyclic quad. are supplementary)

⇒ 5\(x\) - \(y\) + 10 + (-2\(x\) + 3\(y\) + 145) = 180

⇒ 5\(x\) - \(y\) + 10 - 2\(x\) + 3\(y\) + 145 = 180

⇒ 3\(x\) + 2\(y\) + 155 = 180

⇒ 3\(x\) + 2\(y\) = 180 - 155

⇒ 3\(x\) + 2\(y\) = 25 ----- (i)

∠QPS + ∠QRS = 180o (opp. angles of cyclic quad. are supplementary)

⇒ -4\(x\) - 7\(y\) + 150 + (2\(x\) + 8\(y\) + 105) = 180

⇒ -4\(x\) - 7\(y\) + 75 + 2\(x\) + 8\(y\) + 180 = 180

⇒ -2\(x\) + \(y\) + 255 = 180

⇒ -2\(x\) + y = 180 - 255

⇒ -2\(x\) + \(y\) = -75 ------- (ii)

⇒ \(y\) = -75 + 2\(x\) -------- (iii)

Substitute (-75 + 2\(x\)) for \(y\) in equation (i)

⇒ 3\(x\) + 2(-75 + 2\(x\)) = 25

⇒ 3\(x\) - 150 + 4\(x\) = 25

⇒ 7\(x\) = 25 + 150

⇒ 7\(x\) = 175

⇒ \(x = \frac{175}{7} = 25\)

From equation (iii)

⇒ \(y\) = -75 + 2(25) = -75 + 50

⇒ \(y\) = -25

∴ \(x\) + \(y\) = 25 + (-25) = 0

12.

The area of a trapezium is 200 cm\(^2\). Its parallel sides are in the ratio 2 : 3 and the perpendicular distance between them is 16 cm. Find the length of each of the parallel sides

A.

10 cm and 15 cm

B.

8 cm and 12 cm

C.

6 cm and 9 cm

D.

12 cm and 18 cm

Correct answer is A

Area of trapezium = \(\frac{1}{2}(a + b) h\)

⇒ \(\frac{1}{2} (a + b)\times 16 = 200\)

⇒ 8(a + b) = 200

⇒ a + b = \(\frac{200}{8}\) = 25 -----(i)

⇒ a : b = 2 : 3

⇒ \(\frac{a}{b} = \frac{2}{3}\)

⇒ 3a = 2b

⇒ a = \(\frac{2b}{3}\) -------(ii)

Substitute \(\frac{2b}{3}\) for a in equation (i)

⇒ \(\frac{2b}{3}\) + b = 25

 \(\frac{5b}{3}\) = 25

⇒ b = 25 ÷ \(\frac{5}{3} = 25\times\frac{3}{5} = 15cm\)

From equation (ii)

⇒ a = \(\frac{2 \times 15}{3} = 2\times5 = 10cm\)

∴ Lengths of each parallel sides are 10cm and 15cm

13.

Study the given histogram above and answer the question that follows.

What is the total number of students that scored at most 50 marks?

A.

380

B.

340

C.

360

D.

240

Correct answer is C

Total number of students that scored at most 50 marks = 100 + 80 + 60 + 40 + 80 = 360

14.

Find the volume of a cone which has a base radius of 5 cm and slant height of 13 cm.

A.

\(300\pi\) cm\(^3\)

B.

\(325\pi\) cm\(^3\)

C.

\(\frac{325}{3}\pi\) cm\(^3\)

D.

\(100\pi\) cm\(^3\)

Correct answer is D

Volume of a cone = \(\frac{1}{3}\pi r^2 h\)

r = 5 cm

l = 13 cm

Using Pythagoras theorem

⇒ \(13^2 = 5^2 + h^2\)

⇒ \(169 = 25 + h^2\)

⇒ \(169 - 25 = h^2\)

⇒ \(h^2 = 144\)

⇒ \(h = \sqrt144 = 12 cm\)

∴ Volume of the cone = \(\frac{1}{3} \times\pi\times 5^2 x 12 = 100\pi\) cm\(^3\)

15.

Which inequality describes the graph above?

A.

\(4y + 5x ≥ 20\)

B.

\(5y + 4x ≤ 20\)

C.

\(4y + 5x ≤ 20\)

D.

\(5y + 4x ≥ 20\)

Correct answer is B

First, we find the equation of the boundary line using the two intercepts.The slope is

m = \(\frac{4 - 0}{0 - 5} = {4}{5}\)

The y-intercept is 4

The slope-intercept form of the equation is therefore

y = -\(\frac{4}{5} x + 4\)

\(\implies y + \frac{4}{5} x = 4\)

Multiply both sides by \(\frac{5}{4}\)

\(\implies\frac{5}{4}(y +\frac{4}{5} x) = 4\times\frac{5}{4}\)

\(\implies\frac{5}{4} y + x = 5\)

Multiply both sides by 4

⇒ \(5y + 4x = 20\)

The inequality is therefore either \(5y + 4x ≤ 20\) or \(5y + 4x ≥ 20.\)

Using the test point (0, 0) -The origin

⇒ 5(0) + 4(0) ≤ 20

⇒ 0 ≤ 20 (True)

∴ The inequality is \(5y + 4x ≤ 20\)