PQRS is a cyclic quadrilateral. Find \(x\) + \(y\)

PQRS is a cyclic quadrilateral. Find \(x\) + \(y\)

A.

50

B.

60

C.

15

D.

0

Correct answer is D

∠PQR + ∠PSR = 180o (opp. angles of cyclic quad. are supplementary)

⇒ 5\(x\) - \(y\) + 10 + (-2\(x\) + 3\(y\) + 145) = 180

⇒ 5\(x\) - \(y\) + 10 - 2\(x\) + 3\(y\) + 145 = 180

⇒ 3\(x\) + 2\(y\) + 155 = 180

⇒ 3\(x\) + 2\(y\) = 180 - 155

⇒ 3\(x\) + 2\(y\) = 25 ----- (i)

∠QPS + ∠QRS = 180o (opp. angles of cyclic quad. are supplementary)

⇒ -4\(x\) - 7\(y\) + 150 + (2\(x\) + 8\(y\) + 105) = 180

⇒ -4\(x\) - 7\(y\) + 75 + 2\(x\) + 8\(y\) + 180 = 180

⇒ -2\(x\) + \(y\) + 255 = 180

⇒ -2\(x\) + y = 180 - 255

⇒ -2\(x\) + \(y\) = -75 ------- (ii)

⇒ \(y\) = -75 + 2\(x\) -------- (iii)

Substitute (-75 + 2\(x\)) for \(y\) in equation (i)

⇒ 3\(x\) + 2(-75 + 2\(x\)) = 25

⇒ 3\(x\) - 150 + 4\(x\) = 25

⇒ 7\(x\) = 25 + 150

⇒ 7\(x\) = 175

⇒ \(x = \frac{175}{7} = 25\)

From equation (iii)

⇒ \(y\) = -75 + 2(25) = -75 + 50

⇒ \(y\) = -25

∴ \(x\) + \(y\) = 25 + (-25) = 0