-sin(6x - 2)
-sin(3x2 - 2x)dx
(6x - 2) sin(3x2 - 2x)
-(6x - 2)sin(3x2 - 2x)
Correct answer is D
Let 3x2−2x=u
y=cosu⟹dydu=−sinu
dudx=6x−2
∴
= - (6x - 2) \sin (3x^{2} - 2x)
Differentiate \frac{6x^3 - 5x^2 + 1}{3x^2} with respect to x
\frac{2 + 2}{3x^3}
2 + \frac{1}{6x}
2 - \frac{2}{3x^3}
\frac{1}{5}
Correct answer is C
\frac{6x^3 - 5x^2 + 1}{3x^2}
let y = 3x2
y = \frac{6x^3}{3x^2} - \frac{6x^2}{3x^2} + \frac{1}{3x^2}
Y = 2x - \frac{5}{3} + \frac{1}{3x^2}
\frac{dy}{dx} = 2 + \frac{1}{3}(-2)x-3
= 2 - \frac{2}{3x^3}
In a triangle XYZ, if < ZYZ is 60, XY = 3cm and YZ = 4cm, calculate the length of the sides XZ.
√23cm
√13cm
2√5cm
2√3cm
Correct answer is B
(XZ)2 = 32 + 42 - 2 x 3 x 4 cos60o
= 25 - 24\frac{1}{2}
XZ = √13cm
3√10
3√5
√26
√13
Correct answer is D
2x - y .....(i)
x + y.....(ii)
from (i) y = 2x - 4
from (ii) y = -x + 2
2x - 4 = -x + 2
x = 2
y = -x + 2
= -2 + 2
= 0
x_1 = 2
y_1 = 0
x_2 = 4
y_2 = 3
Hence, dist. = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}
= \sqrt{(3 - 0)^2 + (4 - 2)^2}
= \sqrt{3^2 + 2^2}
= \sqrt{13}