Processing math: 14%

JAMB Mathematics Past Questions & Answers - Page 288

1,436.

ddx cos(3x2 - 2x) is equal to

A.

-sin(6x - 2)

B.

-sin(3x2 - 2x)dx

C.

(6x - 2) sin(3x2 - 2x)

D.

-(6x - 2)sin(3x2 - 2x)

Correct answer is D

Let 3x22x=u

y=cosudydu=sinu

dudx=6x2

= - (6x - 2) \sin (3x^{2} - 2x)

1,437.

Differentiate \frac{6x^3 - 5x^2 + 1}{3x^2} with respect to x

A.

\frac{2 + 2}{3x^3}

B.

2 + \frac{1}{6x}

C.

2 - \frac{2}{3x^3}

D.

\frac{1}{5}

Correct answer is C

\frac{6x^3 - 5x^2 + 1}{3x^2}

let y = 3x2

y = \frac{6x^3}{3x^2} - \frac{6x^2}{3x^2} + \frac{1}{3x^2}

Y = 2x - \frac{5}{3} + \frac{1}{3x^2}

\frac{dy}{dx} = 2 + \frac{1}{3}(-2)x-3

= 2 - \frac{2}{3x^3}

1,438.

In a triangle XYZ, if < ZYZ is 60, XY = 3cm and YZ = 4cm, calculate the length of the sides XZ.

A.

√23cm

B.

√13cm

C.

2√5cm

D.

2√3cm

Correct answer is B

(XZ)2 = 32 + 42 - 2 x 3 x 4 cos60o

= 25 - 24\frac{1}{2}

XZ = √13cm

1,439.

The angle of elevation of a building from a measuring instrument placed on the ground is 30°. If the building is 40m high, how far is the instrument from the foot of the building?

A.

\frac{20}{√3}m

B.

\frac{40}{√3}m

C.

20√3m

D.

40√3m

Correct answer is D

\frac{40}{x} = tan 30°

x = \frac{40}{tan 30}

= \frac{40}{1\sqrt{3}}

= 40√3m

1,440.

Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2

A.

3√10

B.

3√5

C.

√26

D.

√13

Correct answer is D

2x - y .....(i)

x + y.....(ii)

from (i) y = 2x - 4

from (ii) y = -x + 2

2x - 4 = -x + 2

x = 2

y = -x + 2

= -2 + 2

= 0

x_1 = 2

y_1 = 0

x_2 = 4

y_2 = 3

Hence, dist. = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}

= \sqrt{(3 - 0)^2 + (4 - 2)^2}

= \sqrt{3^2 + 2^2}

= \sqrt{13}