JAMB Mathematics Past Questions & Answers - Page 265

1,321.

For an arithmetical sequence, the first term is 2 and the common difference is 3. Find the sum of the first 11 terms

A.

157

B.

187

C.

197

D.

200

Correct answer is B

a = 2, d = 3 and n = 11

To find Sn/sub> = \(\frac{n}{2}\) [2a + (n - 1) \(\delta\)]

= \(\frac{11}{2}\) [2(2) + (11 - 1) 3]

= \(\frac{11}{2}\)n [4 + 10(3)]

= \(\frac{11}{2}\)(34)

= 11 x 17

= 187

1,322.

What is the n-th term of the sequence 2, 6, 12, 20...?

A.

4n - 2

B.

2(3n - 1)

C.

n2 + n

D.

n2 + 3n + 2

Correct answer is C

Given that 2, 6, 12, 20...? the nth term = n\(^2\) + n

check: n = 1, u1 = 2

n = 2, u2 = 4 + 2 = 6

n = 3, u3 = 9 + 3 = 12

∴ n = 4, u4 = 16 + 4 = 20

1,323.

Find the sum to infinity to the following series 3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

A.

1270

B.

190

C.

18

D.

9

Correct answer is D

3 + 2 + \(\frac{4}{3}\) + \(\frac{8}{9}\) + \(\frac{16}{17}\) + .....

a = 3

r = \(\frac{2}{3}\)

s \(\alpha\) = \(\frac{a}{1 - r}\) = \(\frac{3}{1 - \frac{2}{3}}\)

= \(\frac{3}{\frac{1}{3}}\)

= 3 x 3

= 9

1,324.

Find all values of x satisfying the inequality -11 \(\leq\) 4 - 3x \(\leq\) 28

A.

-5 \(\leq\) x v 8

B.

5 \(\leq\) x \(\leq\) 8

C.

-8 \(\leq\) x \(\leq\) 5

D.

-5 < x \(\leq\) 8

Correct answer is C

To solve -11 \(\leq\) 4 - 3x \(\leq\) 28

-11 \(\leq\) 4 - 3x also 4 -3x \(\leq\) 28

15 \(\leq\) -3x \(\leq\) 24 = 15 \(\geq\) 3x - 3x \(\geq\) -24

-5 \(\geq\) x, x \(\geq\) -8

i.e. x \(\leq\) 5

∴ -8 \(\leq\) x \(\leq\) 5

1,325.

Resolve \(\frac{3}{x^2 + x - 2}\) into partial fractions

A.

\(\frac{1}{x - 1} - \frac{1}{x + 2}\)

B.

\(\frac{1}{x + 1} + \frac{1}{x - 2}\)

C.

\(\frac{1}{x + 1} - \frac{1}{x - 2}\)

D.

\(\frac{1}{x - 2} + \frac{1}{x + 2}\)

Correct answer is A

\(\frac{3}{x^2 + x - 2}\) = \(\frac{3}{(x - 1)(x + 2)}\)

\(\frac{A}{x - 1}\) + \(\frac{B}{x + 2}\)

A(x + 2) + B(x - 1) = 3

when x = 1, 3A = 3 \(\to\) a = 1

when x = -2, -3B = 3 \(\to\) B = -1

= \(\frac{1}{x - 1} - \frac{1}{x + 2}\)