Processing math: 30%

JAMB Mathematics Past Questions & Answers - Page 257

1,281.

Ice forms on a refrigerator ice-box at the rate of (4 - 06t)g per minute after t minutes. If initially there are 2g of ice in the box, find the mass of ice formed in 5 minutes

A.

19.5

B.

17.0

C.

14.5

D.

12.5

Correct answer is C

dmdt = 4 - 0.6t

dm = (4 - 0.6t)dt

m = 4t0.3t2+c, when t = 0, m = 2g

∴ c = 2

m = 4t0.3t2+2, when t = 5 minutes

m = 4(5)0.3(5)2+2=207.5+2

= 14.5

1,282.

If y = x sin x, Find d2yd2x

A.

2 cosx - x sinx

B.

sinx + x cosx

C.

sinx - x cosx

D.

x sinx - 2 cosx

Correct answer is A

y=xsinx

dydx=xcosx+sinx

d2ydx2=x(sinx)+cosx+cosx

= 2cosxxsinx

1,283.

Evaluate lim

A.

7

B.

2

C.

3

D.

4

Correct answer is B

\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}

\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}

= \frac{(x^{2} + 3x - 2)}{x + 2}

\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}

= \frac{2^{2} + 3(2) - 2}{2 + 2}

= \frac{4 + 6 - 2}{4} = 2

1,284.

Given that \theta is an acute angle and sin \theta = \frac{m}{n}, find cos \theta

A.

\frac{\sqrt{n^2 - m^2}}{m}

B.

\frac{\sqrt{(n + m)(n - m)}}{n}

C.

\frac{m}{\sqrt{n^2 - m^2}}

D.

\sqrt{\frac{n}{n^2 - m^2}}

Correct answer is B

sin \theta = \frac{m}{n} 

Opp = m; Hyp = n

Adj = \sqrt{n^{2} - m^{2}}

\cos \theta = \frac{\sqrt{n^{2} - m^{2}}}{n}

= \frac{\sqrt{(n + m)(n - m)}}{n}

1,285.

Find then equation line through (5, 7) parallel to the line 7x + 5y = 12

A.

5x + 7y = 120

B.

7x + 5y = 70

C.

x + y = 7

D.

15x + 17y = 90

Correct answer is B

Equation (5, 7) parallel to the line 7x + 5y = 12

5Y = -7x + 12

y = \frac{-7x}{5} + \frac{12}{5}

Gradient = \frac{-7}{5}

∴ Required equation = \frac{y - 7}{x - 5} = \frac{-7}{5} i.e. 5y - 35 = -7x + 35

5y + 7x = 70