2 cosx - x sinx
sinx + x cosx
sinx - x cosx
x sinx - 2 cosx
Correct answer is A
y=xsinx
dydx=xcosx+sinx
d2ydx2=x(−sinx)+cosx+cosx
= 2cosx−xsinx
7
2
3
4
Correct answer is B
\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}
\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}
= \frac{(x^{2} + 3x - 2)}{x + 2}
\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}
= \frac{2^{2} + 3(2) - 2}{2 + 2}
= \frac{4 + 6 - 2}{4} = 2
Given that \theta is an acute angle and sin \theta = \frac{m}{n}, find cos \theta
\frac{\sqrt{n^2 - m^2}}{m}
\frac{\sqrt{(n + m)(n - m)}}{n}
\frac{m}{\sqrt{n^2 - m^2}}
\sqrt{\frac{n}{n^2 - m^2}}
Correct answer is B
sin \theta = \frac{m}{n}
Opp = m; Hyp = n
Adj = \sqrt{n^{2} - m^{2}}
\cos \theta = \frac{\sqrt{n^{2} - m^{2}}}{n}
= \frac{\sqrt{(n + m)(n - m)}}{n}
Find then equation line through (5, 7) parallel to the line 7x + 5y = 12
5x + 7y = 120
7x + 5y = 70
x + y = 7
15x + 17y = 90
Correct answer is B
Equation (5, 7) parallel to the line 7x + 5y = 12
5Y = -7x + 12
y = \frac{-7x}{5} + \frac{12}{5}
Gradient = \frac{-7}{5}
∴ Required equation = \frac{y - 7}{x - 5} = \frac{-7}{5} i.e. 5y - 35 = -7x + 35
5y + 7x = 70