Evaluate \(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)

A.

7

B.

2

C.

3

D.

4

Correct answer is B

\(\lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4}\)

\(\frac{(x - 2)(x^{2} + 3x - 2)}{x^{2} - 4} = \frac{(x - 2)(x^{2} + 3x - 2)}{(x - 2)(x + 2)}\)

= \(\frac{(x^{2} + 3x - 2)}{x + 2}\)

\(\therefore \lim \limits_{x \to 2} \frac{(x - 2)(x^2 + 3x - 2)}{x^2 - 4} = \lim \limits_{x \to 2} \frac{x^{2} + 3x - 2}{x + 2}\)

= \(\frac{2^{2} + 3(2) - 2}{2 + 2}\)

= \(\frac{4 + 6 - 2}{4} = 2\)