Given that \(\theta\) is an acute angle and sin \(\theta\) = \(\frac{m}{n}\), find cos \(\theta\)

A.

\(\frac{\sqrt{n^2 - m^2}}{m}\)

B.

\(\frac{\sqrt{(n + m)(n - m)}}{n}\)

C.

\(\frac{m}{\sqrt{n^2 - m^2}}\)

D.

\(\sqrt{\frac{n}{n^2 - m^2}}\)

Correct answer is B

sin \(\theta\) = \(\frac{m}{n}\) 

Opp = m; Hyp = n

Adj = \(\sqrt{n^{2} - m^{2}}\)

\(\cos \theta = \frac{\sqrt{n^{2} - m^{2}}}{n}\)

= \(\frac{\sqrt{(n + m)(n - m)}}{n}\)